【題目】先化簡,再求值:
閱讀材料,大數(shù)學(xué)家高斯在上學(xué)讀書時(shí)曾經(jīng)研究過這樣一個(gè)問題:1+2+3+…+100=?經(jīng)過研究,這個(gè)問題的一般性結(jié)論是1+2+3+…+,其中n是正整數(shù),F(xiàn)在我們來研究一個(gè)類似的問題:1×2+2×3+…=?
觀察下面三個(gè)特殊的等式
將這三個(gè)等式的兩邊相加,可以得到1×2+2×3+3×4=
讀完這段材料,請你思考后回答:(只需寫出結(jié)果,不必寫中間的過程)
(1)
(2)1×2+2×3+3×4+…+n×(n+1)=
(3)
【答案】(1)343400;(2)n(n+1)(n+2);(3)n(n+1)(n+2)(n+3).
【解析】
(1)根據(jù)三個(gè)特殊等式相加的結(jié)果,代入熟記進(jìn)行計(jì)算即可求解;
(2)先對特殊等式進(jìn)行整理,從而找出規(guī)律,然后把每一個(gè)算式都寫成兩個(gè)兩個(gè)算式的運(yùn)算形式,整理即可得解;
(3)根據(jù)(2)的求解規(guī)律,利用特殊等式的計(jì)算方法,先把每一個(gè)算式分解成兩個(gè)算式的運(yùn)算形式,整理即可得解.
因?yàn)?/span>1×2+2×3+3×43×4×5=20,即1×2+2×3+3×43×(3+1)×(3+2)=20,故:
(1)原式100×(100+1)×(100+2)100×101×102=343400;
(2)原式n(n+1)(n+2);
(3)∵1×2×3=[1×2×3×4﹣0×1×2×3],2×3×4=[2×3×4×5﹣1×2×3×4],...,n(n+1)(n+2)= [n(n+1)(n+2)(n+3)﹣n(n﹣1)(n+1)(n+2)]
∴原式=[1×2×3×4﹣0×1×2×3]+ [2×3×4×5﹣1×2×3×4]+...+ [n(n+1)(n+2)(n+3)﹣n(n﹣1)(n+1)(n+2)]=n(n+1)(n+2)(n+3).
故答案為:343400;n(n+1)(n+2);n(n+1)(n+2)(n+3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一次函數(shù),下列結(jié)論錯(cuò)誤的是( )
A.函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)是
B.函數(shù)值隨自變量的增大而減小
C.函數(shù)的圖象不經(jīng)過第三象限
D.函數(shù)的圖象向下平移個(gè)單位長度得到的圖象
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,測量人員在山腳A處測得山頂B的仰角為45°,沿著仰角為30°的山坡前進(jìn)1000米到達(dá)D處,在D處測得山頂B的仰角為60°,求山的高度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料并完成任務(wù):
中國古代三國時(shí)期吳國的數(shù)學(xué)家趙爽最早對勾股定理作出理論證明.他創(chuàng)制了一幅“勾股圓方圖”(如圖l),用數(shù)形結(jié)合的方法,給出了勾股定理的詳細(xì)證明.在這幅“勾股圓方圖”中,以弦為邊長得到的正方形是由個(gè)全等的直角三角形再加上中間的那個(gè)小正方形組成的.每個(gè)直角三角形的面積為;中間的小正方形邊長為,面積為.于是便得到式子:.趙爽的這個(gè)證明可謂別具匠心,極富創(chuàng)新意識.他用幾何圖形的截、割、拼、補(bǔ)來證明代數(shù)式之間的恒等關(guān)系,既具嚴(yán)密性,又具直觀性,為中國古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨(dú)特風(fēng)格樹立了一個(gè)典范.如圖2,是“趙爽弦圖”,其中、、和是四個(gè)全等的直角三角形,四邊形和都是正方形,根據(jù)這個(gè)圖形的面積關(guān)系,可以證明勾股定理.設(shè),,,取,.
任務(wù):
(1)填空:正方形的面積為______,四個(gè)直角三角形的面積和為______;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:我們學(xué)習(xí)等邊三角形時(shí)得到直角三角形的一個(gè)性質(zhì):在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,則:AC=AB.
探究結(jié)論:小明同學(xué)對以上結(jié)論作了進(jìn)一步研究.
(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BE與CE之間的數(shù)量關(guān)系為 .
(2)如圖2,點(diǎn)D是邊CB上任意一點(diǎn),連接AD,作等邊△ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.試探究線段BE與DE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.
(3)當(dāng)點(diǎn)D為邊CB延長線上任意一點(diǎn)時(shí),在(2)條件的基礎(chǔ)上,線段BE與DE之間存在怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論 .
拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣,1),點(diǎn)B是x軸正半軸上的一動點(diǎn),以AB為邊作等邊△ABC,當(dāng)C點(diǎn)在第一象限內(nèi),且B(2,0)時(shí),求C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年“雙十一”期間,某快遞公司計(jì)劃租用甲、乙兩種車輛快遞貨物,從貨物量來計(jì)算:若租用兩種車輛合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙種車輛,完成任務(wù)的天數(shù)是單獨(dú)租用甲種車輛完成任務(wù)天數(shù)的2倍.
(1)求甲、乙兩種車輛單獨(dú)完成任務(wù)分別需要多少天?
(2)已知租用甲、乙兩種車輛合運(yùn)需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨(dú)租甲種車輛、單獨(dú)租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b, A、B兩點(diǎn)之間的距離表示為|AB|,利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示﹣3和1兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上表示x和﹣2的兩點(diǎn)之間的距離表示為 ;
(3)若x表示一個(gè)有理數(shù),且-3<x<1,則|x﹣1|+|x+3|的最小值是 ;
(4)若x表示一個(gè)有理數(shù),且|x﹣1|+|x+3|>4,則有理數(shù)x的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com