【題目】問(wèn)題探究

1)如圖①,在正方形ABCD內(nèi),請(qǐng)畫(huà)出使∠BPC=90°的所有點(diǎn)P;

2)如圖②,已知矩形ABCD,AB=9,BC=10,在矩形ABCD內(nèi)(含邊)畫(huà)出使∠BPC=60°的所有點(diǎn)P,并求出APD面積的最大值;

3)隨著社會(huì)發(fā)展,農(nóng)業(yè)觀(guān)光園走進(jìn)了我們的生活,某農(nóng)業(yè)觀(guān)光園的平面示意圖如圖3所示的四邊形ABCD,其中∠A=120°,∠B=C=90°,AB=kmBC=6km,觀(guān)光園的設(shè)計(jì)者想在園中找一點(diǎn)P,使得點(diǎn)P與點(diǎn)A、BC、D所連接的線(xiàn)段將整個(gè)觀(guān)光園分成四個(gè)區(qū)域,用來(lái)進(jìn)行不同的設(shè)計(jì)與規(guī)劃,從實(shí)用和美觀(guān)的角度他們還要求在BPC的區(qū)域內(nèi)∠BPC=120°,且APD的區(qū)域面積最小,試問(wèn)在四邊形ABCD內(nèi)是否存在這樣的點(diǎn)P,使得∠BPC=120°,且APD面積最?若存在,請(qǐng)你在圖中畫(huà)出點(diǎn)P點(diǎn)的位置,并求出APD的最小面積.若不存在,說(shuō)明理由.

【答案】(1)見(jiàn)解析;(2)45-;(3)9-12.

【解析】

1)如圖,以BC為直徑作上半圓(不含點(diǎn)B、C),根據(jù)直徑所對(duì)的圓周角為直角得到該半圓上的任意一點(diǎn)即可;(2)以BC為邊作等邊BPC;作等邊BPC的外接圓⊙OAB交于F,與AD交于點(diǎn)E、G,與CD交于點(diǎn)H,即為所求,(3)以BC為邊向下作等邊BCQ,作BCQ的外接圓⊙O,則劣弧BC即為所求,作AD的平行線(xiàn)MN切劣弧BCP,連接OP并延長(zhǎng)交ADE,由切線(xiàn)的性質(zhì)可得OPMN,即可證明OPAD,由平行線(xiàn)間垂線(xiàn)段最短,可得三角形APD面積最小,過(guò)AAHCDH,由BC=10可得BCQ的外接圓半徑為2,與BC弦的弦心距為,根據(jù)AB=可得AH與⊙O相切,切點(diǎn)為G,根據(jù)平行線(xiàn)的判定定理可得OC//AD,進(jìn)而可證明四邊形OCDF為平行四邊形,即可證明CD=OF,根據(jù)直角三角形銳角互余的關(guān)系可得∠EOF=30°,通過(guò)解直角三角形可求出OE的長(zhǎng),進(jìn)而可求出PE的長(zhǎng),根據(jù)三角形面積公式即可得答案.

1)如圖,以BC為直徑作上半圓(不含點(diǎn)BC),

∵直徑所對(duì)的圓周角是90°,

(不含點(diǎn)BC)即為所求.

2)以BC為邊作等邊BPC;作等邊BPC的外接圓⊙OAB交于F,與AD交于點(diǎn)E、G,與CD交于點(diǎn)H,

BPC是等邊三角形,是弦BC所對(duì)圓周角,

即為所求.

連接CF,DF

∵三角形的底相等,高越大面積越大,

∴當(dāng)P點(diǎn)與F點(diǎn)或H點(diǎn)重合時(shí)面積最大,

∵∠BFC=60°BC=10,

tan60°===

BF=

AF=9-,

SAFD=×9-×10=45-.

3)如圖,以BC為邊向下作等邊BCQ,作BCQ的外接圓⊙O,則劣弧BC即為所求,作AD的平行線(xiàn)MN切劣弧BCP,連接OP并延長(zhǎng)交ADE

OPMN,

AD//MN,

OEAD,

∵平行線(xiàn)間垂線(xiàn)段最短,

APD面積最小,

過(guò)AAHCDH,作OKBC,延長(zhǎng)OKAHG,交ADF

BCQ是等邊三角形,

∴∠OBC=30°,BK=3,

OB==,OK==,即外接圓的半徑為BC的弦心距為,

∵∠DCB=90°,

AH//BC,

OGAH

AB=KG=CH,

AB=,

OG=OK+KG=OK+AB=2=OB

AH與⊙O相切,切點(diǎn)為G

∵∠D=60°,∠OCD=90°+30°=120°

AD//OC,

∵∠OKC=DCK=90°,

OF//CD

∴四邊形OCDF是平行四邊形,

OF=CD

∵∠BAD=120°,∠BAH=90°

∴∠FAG=30°,

∵∠FAG+AFO=90°,∠EOF+AFO=90°,

∴∠EOF=FAG=30°,

∵∠FAG=30°AH=BC=6,

AD==,HD=6tan30°=2,

OF=CD=HD+CH=2+=3

OE=OFcosEOF=OFcos30°=3×=,

PE=OE-OP=-2

SAPD=ADPE=×-2×=9-12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+bx-4a經(jīng)過(guò)A(-1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B

1)求拋物線(xiàn)的解析式;

2)已知點(diǎn)D(m,m+1)在第一象限的拋物線(xiàn)上,求點(diǎn)D關(guān)于直線(xiàn)BC對(duì)稱(chēng)的點(diǎn)的坐標(biāo);

3)在(2)的條件下,連接BD,點(diǎn)P為拋物線(xiàn)上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象經(jīng)過(guò)兩點(diǎn),與反比例函數(shù)的圖象在第一象限內(nèi)的交點(diǎn)為

求一次函數(shù)和反比例函數(shù)的表達(dá)式;

x軸上是否存在點(diǎn)P,使?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一次函數(shù)圖像的交點(diǎn)在第一象限,則一次函數(shù)的圖像不經(jīng)過(guò)( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小凱和同學(xué)帶著皮尺,去測(cè)量楊大爺家露臺(tái)遮陽(yáng)蓬的寬度,如圖,由于無(wú)法直接測(cè)量,小凱便在樓前面的地面上選擇了一條直線(xiàn)EF,通過(guò)在直線(xiàn)EF上選點(diǎn)觀(guān)測(cè),發(fā)現(xiàn)當(dāng)他位于N點(diǎn)時(shí),他的視線(xiàn)從M點(diǎn)通過(guò)露臺(tái)D點(diǎn)正好落在遮陽(yáng)蓬A點(diǎn)處:當(dāng)他位于Q點(diǎn)時(shí),視線(xiàn)從P點(diǎn)通過(guò)露臺(tái)D點(diǎn)正好落在遮陽(yáng)蓬B點(diǎn)處,這樣觀(guān)測(cè)到兩個(gè)點(diǎn)A,B間的距離即為遮陽(yáng)蓬的寬.已知ABCDEF,點(diǎn)CAG上,AG、DE、PQ、MN均為垂直于EFMN=PQ,露臺(tái)的寬CD=GE,測(cè)得GE=5米,EN=13.2米,QN=6.2,請(qǐng)你根據(jù)以上信息,求出遮陽(yáng)蓬的寬AB是多少米?(結(jié)果精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我省某地區(qū)為了了解2017年初中畢業(yè)生畢業(yè)去向,對(duì)部分九年級(jí)學(xué)生進(jìn)行了抽樣調(diào)查,就九年級(jí)學(xué)生畢業(yè)后的四種去向:A.讀重點(diǎn)高中;B.讀職業(yè)高中;C.直接進(jìn)入社會(huì)就業(yè);D.其他(如出國(guó)等)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(如①圖,如②圖)

1)該地區(qū)共調(diào)查了_____名九年級(jí)學(xué)生;

2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;

3)若該地區(qū)2017年初中畢業(yè)生共有4000人,請(qǐng)估計(jì)該地區(qū)今年初中畢業(yè)生中讀重點(diǎn)高中的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱(chēng)軸是直線(xiàn)x=1.

b24ac;

4a﹣2b+c<0;

不等式ax2+bx+c>0的解集是x≥3.5;

若(﹣2,y1),(5,y2)是拋物線(xiàn)上的兩點(diǎn),則y1<y2

上述4個(gè)判斷中,正確的是( 。

A.①② B①④ C①③④ D②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ymx+nm0)的圖象與反比例函數(shù)yk0)的圖象交于第一、三象限內(nèi)的A,B兩點(diǎn),與y軸交于點(diǎn)C,過(guò)點(diǎn)BBMx軸,垂足為點(diǎn)M,BMOM2,點(diǎn)A的縱坐標(biāo)為4

1)求該反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)直線(xiàn)ABx軸于點(diǎn)D,過(guò)點(diǎn)D作直線(xiàn)lx軸,如果直線(xiàn)l上存在點(diǎn)P,坐標(biāo)平面內(nèi)存在點(diǎn)Q.使四邊形OPAQ是矩形,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有長(zhǎng)為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度 a 10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬 AB xm,面積為 Sm2

1 S x 的函數(shù)關(guān)系式及 x 值的取值范圍;

2 要圍成面積為 45m2 的花圃,AB 的長(zhǎng)是多少米?

3 當(dāng) AB 的長(zhǎng)是多少米時(shí),圍成的花圃的面積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案