【題目】某公路上一路段的道路維修工程準備對外招標,現有甲、乙兩個工程隊競標,競標資料上顯示:甲工程隊單獨完成此項工程需要10天,乙工程隊單獨完成此項工程需要15天,但甲工程隊每天的工程費用比乙工程隊多300元;甲、乙兩隊合作共需要10200元.工程指揮隊決定從甲、乙兩個工程隊中選一隊單獨完成,若從節(jié)省資金的角度考慮,應選哪個工程隊?
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點P的坐標為(a,b),點P的“變換點”P`的坐標定義如下:當時,P`點坐標為(a,-b);當時,P`點坐標為(b,-a)。線段l:上所有點按上述“變換點”組成一個新的圖形,若直線與組成的新的圖形有兩個交點,則k的取值范圍是( )
A. B. 或 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一個安裝有進出水管的30升容器,水管每單位時間內進出的水量是一定的.設從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,得到水量y(升)與時間x(分鐘)之間的函數關系如圖所示.根據圖象信息給出下列說法:①每分鐘進水5升;②當4≤x≤12時,容器中的水量在減少;③若12分鐘后只放水,不進水,還要8分鐘可以把水放完;④若從一開始進出水管同時打開,則需要24分鐘可以將容器灌滿.其中正確的有________(填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某船以每小時36海里的速度向正東方向航行,在點A測得某島C在北偏東60°方向上,航行半小時后到達點B測得該島在北偏東30°方向上,已知該島周圍16海里內有暗礁.
(1)說明點B是否在暗礁區(qū)域內;
(2)若繼續(xù)向東航行有無觸礁的危險?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列一元一次方程解應用題:
某管道由甲、乙兩工程隊單獨施工分別需要30天、20天.
(1)如果兩隊從管道兩端同時施工,需要多少天完工?
(2)又知甲隊單獨施工每天需付200元施工費,乙隊單獨施工每天需付280元施工費,那么是由甲隊單獨施工,還是由乙隊單獨施工,還是由兩隊同時施工?請你按照少花錢多辦事的原則,設計一個方案,并通過計算說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若二次函數y=x2+bx+c的圖象與x軸交于兩點,與y軸的正半軸交于一點,且對稱軸為x=1,則下列說法正確的是( )
A.二次函數的圖象與x軸的交點位于y軸的兩側
B.二次函數的圖象與x軸的交點位于y軸的右側
C.其中二次函數中的c>1
D.二次函數的圖象與x軸的一個交于位于x=2的右側
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解答題
(1)如圖1,在AB直線一側C、D兩點,在AB上找一點P,使C、D、P三點組成的三角形的周長最短,找出此點并說明理由.
(2)如圖2,在∠AOB內部有一點P,是否在OA、OB上分別存在點E、F,使得E、F、P三點組成的三角形的周長最短,找出E、F兩點,并說明理由.
(3)如圖3,在∠AOB內部有兩點M、N,是否在OA、OB上分別存在點E、F,使得E、F、M、N,四點組成的四邊形的周長最短,找出E、F兩點,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國很多城市水資源缺乏,為了加強居民的節(jié)水意識,某市制定了每月用水4噸以內(包括4噸)和用水4噸以上兩種收費標準(收費標準:每噸水的價格),某用戶每月應交水費y(元)是用水量x(噸)的函數,其函數圖象如圖所示.
(1)分別求出當0≤x≤4、x>4時函數的解析式;
(2)當0≤x≤4、x>4時,每噸水的價格分別是多少?
(3)若某用戶該月交水費12.8元,求該戶用了多少噸水.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com