【題目】已知坐標(biāo)平面內(nèi)的點(diǎn)A3,2),B1,3),C(﹣1,﹣6),D2a,4a4)中只有一點(diǎn)不在直線l上,則這一點(diǎn)是( 。

A.點(diǎn)AB.點(diǎn)BC.點(diǎn)CD.點(diǎn)D

【答案】B

【解析】

先求出直線AB和直線AC的解析式,再把點(diǎn)D2a4a-4)分別代入看是否符合即可.

解:設(shè)直線ABy=kx+b

把點(diǎn)A3,2),B13)代入得,

解得:,

即直線AB為:

x=2a時(shí),

可知,點(diǎn)D不在此函數(shù)圖象上;

設(shè)直線ACy=mx+n,

把點(diǎn)A3,2),C-1,-6)代入得,

解得,

即直線AC為:y=2x-4,

x=2a時(shí),y=2×2a-4=4a-4可知,點(diǎn)D在此函數(shù)圖象上;

A3,2),C-1,-6),D2a4a-4)在一條直線l上,點(diǎn)B不在直線l上,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某藥品研究所開(kāi)發(fā)一種抗菌新藥,經(jīng)多年動(dòng)物實(shí)驗(yàn),首次用于臨床人體試驗(yàn),測(cè)得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時(shí)間x小時(shí)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時(shí),yx成反比例).

1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段yx之間的函數(shù)關(guān)系式.

2)問(wèn)血液中藥物濃度不低于2微克/毫升的持續(xù)時(shí)間多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,的垂直平分線交于點(diǎn),交于點(diǎn)

1)若,求的長(zhǎng);

2)若,求證:是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b是任意兩個(gè)實(shí)數(shù),規(guī)定a與b之間的一種運(yùn)算“⊕”為:a⊕b=,

例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2 =﹣5,

(x2+1)⊕(x﹣1)=(因?yàn)閤2+1>0)

參照上面材料,解答下列問(wèn)題:

(1)2⊕4=  ,(﹣2)⊕4=  ;

(2)若x>,且滿足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC,AE=AF,BECF交于點(diǎn)D,則對(duì)于下列結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( 。

A. B. C. D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線是第一、三象限的角平分線.

1)由圖觀察易知A0,2)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(20),請(qǐng)?jiān)趫D中分別標(biāo)明B53)、C-25)關(guān)于直線l的對(duì)稱點(diǎn)B′、C′的位置,并寫出他們的坐標(biāo):______________________;

2)結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)關(guān)于第一、三象限的角平分線的對(duì)稱點(diǎn)的坐標(biāo)為___________(不必證明);

(3)已知兩點(diǎn)、,試在直線L上畫出點(diǎn)Q,使點(diǎn)QDE兩點(diǎn)的距離之和最小,求QD+QE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B、∠C的平分線BE,CD相交于點(diǎn)F

(1)ABC40°,∠A60°,求∠BFD的度數(shù);

(2)直接寫出∠A與∠BFD的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,當(dāng)∠EPF△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=SABC;④BE+CF=EF.上述結(jié)論中始終正確的有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是二次函數(shù)y=ax2+bx+c的部分x,y的對(duì)應(yīng)值:

x

1

0

1

2

3

y

2

1

2

1

2

1)此二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是 ;

2)當(dāng)拋物線y=ax2+bx+c的頂點(diǎn)在直線y=x+n的下方時(shí),n的取值范圍是 。

查看答案和解析>>

同步練習(xí)冊(cè)答案