【題目】如圖,已知直線y=﹣x﹣(k+1)與雙曲線y= 相交于B、C兩點(diǎn),與x軸相交于A點(diǎn),BM⊥x軸交x軸于點(diǎn)M,SOMB=

(1)求這兩個(gè)函數(shù)的解析式;
(2)若已知點(diǎn)C的橫坐標(biāo)為3,求A、C兩點(diǎn)坐標(biāo);
(3)在(2)條件下,是否存在點(diǎn)P,使以A、O、C、P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:∵SOMB= = ×OM×BM= |k|,由反比例函數(shù)圖象在第二、四象限,

∴k=﹣3,

∴這兩個(gè)函數(shù)的解析式分別為:y=﹣ ,y=﹣x+2


(2)

解:在y=﹣x+2中,

設(shè)y=0,則x=2,

所以A(2,0),

將x=3代入y=﹣ 得,y=﹣1,

所以C(3,﹣1)


(3)

解:當(dāng)AO是對(duì)角線時(shí),由C點(diǎn)坐標(biāo)(3,﹣1),可得:點(diǎn)P1(﹣1,1);

當(dāng)OC是對(duì)角線時(shí),AO=P2C=2,則點(diǎn)P2(1,﹣1);

當(dāng)AC是對(duì)角線時(shí),AO=CP3,則點(diǎn)P3(5,﹣1);

故存在P(﹣1,1)或(1,﹣1)或(5,﹣1),使以A、O、C、P為頂點(diǎn)的四邊形為平行四邊形.


【解析】(1)利用SOMB= ,結(jié)合反比例函數(shù)圖象的性質(zhì)得出k的值,進(jìn)而得出答案;(2)利用圖象上點(diǎn)的坐標(biāo)性質(zhì)分別求出A,C點(diǎn)坐標(biāo);(3)以兩邊為鄰邊,另一邊為對(duì)角線畫(huà)平行四邊形是可行的,所以點(diǎn)P存在.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一次函數(shù)的概念的相關(guān)知識(shí),掌握一般地,如果y=kx+b(k,b是常數(shù),k不等于0),那么y叫做x的一次函數(shù),以及對(duì)反比例函數(shù)的概念的理解,了解形如y=k/x(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù).自變量x的取值范圍是x不等于0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B都在數(shù)軸上,且AB=6
(1)點(diǎn)B表示的數(shù)是;
(2)若點(diǎn)B以每秒2個(gè)單位的速度沿?cái)?shù)軸向右運(yùn)動(dòng),則2秒后點(diǎn)B表示的數(shù)是
(3)若點(diǎn)A、B都以每秒2個(gè)單位沿?cái)?shù)軸向右運(yùn)動(dòng),而點(diǎn)O不動(dòng),t秒后有一個(gè)點(diǎn)是一條線段的中點(diǎn),求t.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解全校2000名學(xué)生的課外閱讀情況,在全校范圍內(nèi)隨機(jī)調(diào)查了50名學(xué)生,得到他們?cè)谀骋惶旄髯哉n外閱讀所用時(shí)間的數(shù)據(jù),將結(jié)果繪制成頻數(shù)分布直方圖(如圖所示).

(1)這50名學(xué)生在這一天課外閱讀所用時(shí)間的眾數(shù)是多少?
(2)這50名學(xué)生在這一天平均每人的課外閱讀所用時(shí)間是多少?
(3)請(qǐng)你根據(jù)以上調(diào)查,估計(jì)全校學(xué)生中在這一天課外閱讀所用時(shí)間在1.0小時(shí)以上(含1.0小時(shí))的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果公司購(gòu)進(jìn)10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機(jī)抽取若干進(jìn)行統(tǒng)計(jì),部分結(jié)果如下表:

蘋果總質(zhì)量n(kg)

100

200

300

400

500

1000

損壞蘋果質(zhì)量m(kg)

10.50

19.42

30.63

39.24

49.54

101.10

蘋果損壞的頻率

(結(jié)果保留小數(shù)點(diǎn)后三位)

0.105

0.097

0.102

0.098

0.099

0.101

估計(jì)這批蘋果損壞的概率為_____(結(jié)果保留小數(shù)點(diǎn)后一位),損壞的蘋果約有______kg.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)的圖象與性質(zhì).

小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過(guò)程,請(qǐng)補(bǔ)充完整:

(1)函數(shù)的自變量x的取值范圍是 ;

(2)下表是yx的幾組對(duì)應(yīng)值.

x

-3

-2

-1

0

1

3

4

5

6

7

y

6

6

m

m的值;

3)如下圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;

4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正六邊形的內(nèi)角和為 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的證明(下劃線內(nèi)補(bǔ)全證明過(guò)程,括號(hào)內(nèi)填寫推理的依據(jù)).
(1)如圖1,AB∥CD,∠B+∠D=180°,求證:CB∥DE
證明:∵AB∥CD(已知)
∴∠B=
∵∠B+∠D=180°(已知)
∴∠C+∠D=180°(等量代換)

(2)如圖2,已知DE∥AC,∠A=∠DEF,請(qǐng)證明∠B=∠FEC. 證明:∵DE∥AC(已知)
∴∠A=
∵∠A=∠DEF(已知)
∴∠DEF=∠(等量代換)
∴AB∥
∴∠=∠

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列等式由左邊至右邊的變形中,屬于因式分解的是( 。

A. x2+5x﹣1=x(x+5)﹣1 B. x2﹣4+3x=(x+2)(x﹣2)+3x

C. x2﹣9=(x+3)(x﹣3) D. (x+2)(x﹣2)=x2﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)y=kx-2(k≠0)的圖象不經(jīng)過(guò)第一象限,那么函數(shù)y= 的圖象一定在(  )。
A.第一,二象限
B.第三,四象限
C.第一,三象限
D.第二,四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案