【題目】某校體育社團(tuán)在校內(nèi)開展你最喜歡的體育項(xiàng)目是什么?四項(xiàng)選一項(xiàng)調(diào)查,對(duì)九年級(jí)學(xué)生隨機(jī)抽樣,并將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖,解答下列問(wèn)題:

(1)本次抽樣人數(shù)有________人;

(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(3)該校九年級(jí)共有600名學(xué)生,估計(jì)九年級(jí)最喜歡跳繩項(xiàng)目的學(xué)生有________人.

【答案】150;(2)見(jiàn)解析;(3180

【解析】

1)根據(jù)最喜歡跑步的人數(shù)是5,所占的百分比是10%,即可求得總?cè)藬?shù);
2)根據(jù)總?cè)藬?shù)乘以最喜歡籃球人數(shù)的百分比可求出其人數(shù);分別用最喜歡跳繩、最喜歡足球的人數(shù)除以總?cè)藬?shù)分別求出其所占的百分比,補(bǔ)全圖形即可;
3)根據(jù)樣本估計(jì)總體,利用總?cè)藬?shù)乘以最喜歡跳繩的人數(shù)所占的百分比即可求解.

解:(1)本次抽樣人數(shù)為:5÷10%=50(人),
故答案為:50
2)最喜歡籃球人數(shù)為:50×40%=20(人),
最喜歡跳繩的人數(shù)所占百分比為:15÷50×100%=30%,

最喜歡足球的人數(shù)所占百分比為:10÷50×100%=20%

補(bǔ)全統(tǒng)計(jì)圖如下:

3)九年級(jí)最喜歡跳繩項(xiàng)目的學(xué)生約有:600×30%=180(人),
故答案為:180

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,且通過(guò)兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△A'B'C',點(diǎn)C的對(duì)應(yīng)點(diǎn)是直線上的格點(diǎn)C'

(1)畫出△A'B'C';

(2)BC上找一點(diǎn)P,使AP平分△ABC的面積;

(3)試在直線l上畫出所有的格點(diǎn)Q,使得由點(diǎn)A'、B'、C'、Q四點(diǎn)圍成的四邊形的面積為9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AD=,FDA延長(zhǎng)線上一點(diǎn),GCF上一點(diǎn),且ACG=AGCGAF=F=20°,則AB=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果兩個(gè)角之差的絕對(duì)值等于60°,則稱這兩個(gè)角互為互優(yōu)角,(本題中所有角都是指大于且小于180°的角)

(1)若∠1和∠2互為互優(yōu)角,當(dāng)∠1=90°時(shí),則∠2=_____°;

(2)如圖1,將一長(zhǎng)方形紙片沿著EP對(duì)折(點(diǎn)P在線段BC上,點(diǎn)E在線段AB)使點(diǎn)B落在點(diǎn)若與互為互優(yōu)角,求∠BPE的度數(shù);

(3)再將紙片沿著PF對(duì)折(點(diǎn)F在線段CDAD)使點(diǎn)C落在C′

①如圖2,若點(diǎn)E、C′P在同一直線上,且互為互優(yōu)角,求∠EPF的度數(shù)(對(duì)折時(shí),線段落在∠EPF內(nèi)部);

②若∠B′PC′與∠EPF互為互優(yōu)角,則∠BPE求∠CPF應(yīng)滿足什么樣的數(shù)量關(guān)系(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD是正方形,F是邊AB,BC上一動(dòng)點(diǎn),DEDF,且DEDFMEF的中點(diǎn).

(1)當(dāng)點(diǎn)F在邊AB上時(shí)(如圖①)

①求證:點(diǎn)E在直線BC上;

②若BF2,則MC的長(zhǎng)為多少.

(2)當(dāng)點(diǎn)FBC上時(shí)(如圖②),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】D,E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB,AC的中點(diǎn).O是△ABC所在平面上的動(dòng)點(diǎn),連接OB,OC,點(diǎn)G,F(xiàn)分別是OB,OC的中點(diǎn),順次連接點(diǎn)D,G,F(xiàn),E.

(1)如圖,當(dāng)點(diǎn)O在△ABC的內(nèi)部時(shí),求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說(shuō)明理由.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在OA,OC上

(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請(qǐng)你從中選取兩個(gè)條件證明△BEO≌△DFO;

(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過(guò)A,B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,AC=FC.

(1)求證:AC是⊙O的切線;
(2)已知圓的半徑R=5,EF=3,求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案