A. | 4 | B. | 6 | C. | 8 | D. | 10 |
分析 根據(jù)拋物線y=x2+bx+c(其中b,c是常數(shù))過點(diǎn)A(2,6),且拋物線的對稱軸與線段BC(1≤x≤3)有交點(diǎn),可以得到c的取值范圍,從而可以解答本題.
解答 解:
∵拋物線y=x2+bx+c(其中b,c是常數(shù))過點(diǎn)A(2,6),且拋物線的對稱軸與線段y=0(1≤x≤3)有交點(diǎn),
∴$\left\{\begin{array}{l}{4+2b+c=6}\\{1≤-\frac{2×1}≤3}\end{array}\right.$,
解得6≤c≤14,
故選A.
點(diǎn)評 本題考查二次函數(shù)的性質(zhì)、解不等式,明確題意,列出相應(yīng)的關(guān)系式是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{20}{x}$-$\frac{20}{x+10}$=6 | B. | $\frac{20}{x+10}$-$\frac{20}{x}$=6 | C. | $\frac{20}{x}$-$\frac{20}{x+10}$=$\frac{1}{10}$ | D. | $\frac{20}{x+10}$-$\frac{20}{x}$=$\frac{1}{10}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | 3 | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com