【題目】把幾個(gè)圖形拼成一個(gè)新的圖形,再通過圖形面積的計(jì)算,常?梢缘玫揭恍┯杏玫氖阶,或可以求出一些不規(guī)則圖形的面積.

1)選擇題:圖1是一個(gè)長(zhǎng)2a、寬2bab)的長(zhǎng)方形,用剪刀沿圖中虛線(對(duì)稱軸)剪開,把它分成四塊形狀和大小都一樣的小長(zhǎng)方形.然后,按圖2那樣拼成一個(gè)(中間空的)正方形,則中間空的部分面積是( 

A2ab B.(a+b2 C.(ab2 Da2b2

2)如圖3,是將幾個(gè)面積不等的小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為a+b+c的正方形,試用不同的方法計(jì)算這個(gè)圖形的面積.據(jù)此,你能發(fā)現(xiàn)什么結(jié)論,請(qǐng)直接寫出來: 

3)如圖4,是將兩個(gè)邊長(zhǎng)分別為ab的正方形拼在一起,B、CG三點(diǎn)在同一直線上,連接BDBF.若兩個(gè)正方形的邊長(zhǎng)滿足a+b=10ab=20,求陰影部分的面積.

【答案】1C;(2)(a+b+c2=a2+b2+c2+2ab+2bc+2ac;(320

【解析】

1)由圖2可知中間小正方形的邊長(zhǎng)為(),即可求得答案;

2)一種可以是3個(gè)正方形的面積和6個(gè)矩形的面積,一種是大正方形的面積,可得等式;

3)利用S陰影=正方形ABCD的面積+正方形ECGF的面積-BGF的面積-ABD的面積求解即可.

(1) 由圖2可知中間小正方形的邊長(zhǎng)為(),

∴中間空的部分面積是:,

故答案為:C;

(2)如圖,3個(gè)正方形的面積和6個(gè)矩形的面積和為:,

大正方形的面積為:

(3)∵, ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn),的坐標(biāo)分別為,

1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格內(nèi)作出軸、軸;

2)請(qǐng)作出關(guān)于軸對(duì)稱的(不寫畫法),并寫出點(diǎn)的坐標(biāo);

3)求出關(guān)于軸對(duì)稱的的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,A=40°,B=70°,CE平分ACB,CDAB于D,DFCE,則CDF= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.

(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?

(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(01),ABBC,∠ABC90°CDx軸.

1)填空:B點(diǎn)坐標(biāo)為   ,C點(diǎn)坐標(biāo)為   

2)若點(diǎn)P是直線CD上第一象限上一點(diǎn)且△PAB的面積為6.5,求P點(diǎn)的坐標(biāo);

3)在(2)的條件下點(diǎn)Mx軸上線段OD之間的一動(dòng)點(diǎn),當(dāng)△PAM為等腰三角形時(shí),直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,點(diǎn)Q坐標(biāo)為(x,y),若過點(diǎn)Q的直線lx軸夾角為45°時(shí),則稱直線l為點(diǎn)Q的“湘依直線”.

(1)已知點(diǎn)A的坐標(biāo)為(6,0),求點(diǎn)A的“湘依直線”表達(dá)式;

(2)已知點(diǎn)D的坐標(biāo)為(0,﹣4),過點(diǎn)D的“湘依直線”圖象經(jīng)過第二、三、四象限,且與x軸交于C點(diǎn),動(dòng)點(diǎn)P在反比例函數(shù)y=(x>0)上,求△PCD面積的最小值及此時(shí)點(diǎn)P的坐標(biāo);

(3)已知點(diǎn)M的坐標(biāo)為(0,2),經(jīng)過點(diǎn)M且在第一、二、三象限的“湘依直線”與拋物線y=x2+(m﹣2)x+m+2相交與A(x1,y1),B(x2,y2)兩點(diǎn),若0≤x1≤2,0≤x2≤2,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,BD=DC,∠ABD=∠ACD,求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)將至,一電商平臺(tái)對(duì)本年度最受消費(fèi)者喜愛的某品牌辣椒醬進(jìn)行促銷,促銷方式為:每人每次凡購(gòu)買不超過15瓶的,每瓶4元,外加運(yùn)費(fèi)元;超過15瓶的,超過的部分每瓶減少元,并付運(yùn)費(fèi)元,若設(shè)購(gòu)買的瓶數(shù)為瓶.

1)當(dāng)時(shí),請(qǐng)用含的代數(shù)式表示購(gòu)買所需費(fèi)用:_______________;當(dāng)時(shí),請(qǐng)用含的代數(shù)式表示購(gòu)買所需費(fèi)用:_______________

2)王老師和李老師看到促銷信息后擬打算在該平臺(tái)分別購(gòu)買20瓶和26瓶該品牌辣椒醬

①經(jīng)過預(yù)算,兩位老師在該平臺(tái)購(gòu)買分別花費(fèi)82元和100元,請(qǐng)通過計(jì)算求出的值.

②你能幫兩位老師設(shè)計(jì)一種更省錢的購(gòu)買方案嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一海輪位于燈塔P的西南方向,距離燈塔40了2海里的A處,它沿正東方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東60°方向上的B處,求航程AB的值(結(jié)果保留根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案