【題目】為了傳承優(yōu)秀傳統(tǒng)文化,我市組織了一次初三年級1 200名學(xué)生參加的“漢字聽寫”大賽,為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了100名學(xué)生的成績(滿分50分),整理得到如下的統(tǒng)計圖表:
成績(分) | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
人數(shù) | 1 | 2 | 3 | 3 | 6 | 7 | 5 | 8 | 15 | 9 | 11 | 12 | 8 | 6 | 4 |
成績分組 | 頻數(shù) | 頻率(百分比) |
35≤x<38 | 3 | 0.03 |
38≤x<41 | a | 0.12 |
41≤x<44 | 20 | 0.20 |
44≤x<47 | 35 | 0.35 |
47≤x≤50 | 30 | b |
請根據(jù)所提供的信息解答下列問題:
(1)頻率統(tǒng)計表中a=________,b=_______;
(2)請補全頻數(shù)分布直方圖;
(3)請根據(jù)抽樣統(tǒng)計結(jié)果,估計該次大賽中成績不低于41分的學(xué)生有多少人?
【答案】(1)12,0.30;(2)補全的頻數(shù)分布直方圖見解析;(3)1020人.
【解析】試題分析:(1)根據(jù)表格和隨機(jī)抽取了100名學(xué)生的成績,可以求得的值,本題得以解決;
(2)根據(jù)(1)中的值,可以將頻數(shù)分布直方圖補充完整;
(3)根據(jù)表格中的數(shù)據(jù)可以求得該次大賽中成績不低于41分的學(xué)生人數(shù).
試題解析:(1)由表格可得,a=100×0.12=12,
b=30÷100=0.30,
故答案為:12,0.30;
(2)補全的頻數(shù)分布直方圖如右圖所示,
(3)由題意可得,
1200×(0.20+0.35+0.30)=1020(人),
即該次大賽中成績不低于41分的學(xué)生有1020人
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1過點A(0,4)與點D(4,0),直線l2:y=x+1與x軸交于點C,兩直線l1,l2相交于點B.
(1)求直線l1的函數(shù)表達(dá)式;
(2)求點B的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=2∠C,∠BAC的平分線AD交BC于D,E為AC上一點,AE=AB,連接DE.
(1)求證:△ABD≌△AED;
(2)已知BD=5,AB=9,求AC長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了對學(xué)生進(jìn)行愛國主義教育,某校組織學(xué)生去看演出,有甲乙兩種票,已知甲乙兩種票的單價比為4:3,單價和為42元.
(1)甲乙兩種票的單價分別是多少元?
(2)學(xué)校計劃拿出不超過750元的資金,讓七年級一班的36名學(xué)生首先觀看,且規(guī)定購買甲種票必須多于15張,有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D,E是BC邊上的兩點,AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,則∠CAD的度數(shù)為( )
A. 50° B. 60° C. 70° D. 110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校九年級(1)班學(xué)生的體育測試情況,對全班學(xué)生的體育成績進(jìn)行了統(tǒng)計,并繪制出以下不完整的頻數(shù)分布表和扇形統(tǒng)計圖
分組 | 分?jǐn)?shù)段(分) | 頻數(shù) |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
(1)求全班學(xué)生人數(shù)和m的值;
(2)該班學(xué)生的體育成績的中位數(shù)落在哪個分?jǐn)?shù)段內(nèi)?
(3)該班體育成績滿分(60分)共有3人,其中男生2人,女生1人,現(xiàn)從這3人中隨機(jī)選取2人參加校運動會,求恰好選到一男一女生的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0),與y軸交于C(0,﹣2),頂點為D,點E的坐標(biāo)為(0,﹣1),該拋物線于BE交于另一點F,連接BC
(1)求該拋物線的解析式;
(2)若點H(1,y)在BC上,連接FH,求△FHB的面積;
(3)一動點M從點D出發(fā),以每秒1個單位的速度沿平行于y軸方向向上運動,連接OM,BM,設(shè)運動時間為t秒(t>0),點M在運動過程中,當(dāng)t為何值時,∠OMB=90°?
(4)在x軸上方的拋物線上,是否存在點P,使得∠PBF被BA平分?若存在,直接寫出點P的坐標(biāo);若不存在,請說明利由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A在數(shù)軸上,從點A出發(fā),沿數(shù)軸向右移動3個單位長度到達(dá)點C,點B所表示的有理數(shù)是5的相反數(shù),按要求完成下列各小題.
(1)請在數(shù)軸上標(biāo)出點B和點C;
(2)求點B所表示的有理數(shù)與點C所表示的有理數(shù)的乘積;
(3)若將該數(shù)軸進(jìn)行折疊,使得點A和點B重合,則點C和數(shù) 所表示的點重合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com