【題目】如圖,小明在山腳下的A處測得山頂N的仰角為45°,此時,他剛好與山底D在同一水平線上.然后沿著坡度為30°的斜坡正對著山頂前行110米到達(dá)B處,測得山頂N的仰角為60°.求山的高度.(結(jié)果精確到1米,參考數(shù)據(jù): ≈1.414, ≈1.732).
【答案】山的高度為150米.
【解析】
試題過點B作BF⊥DN于點F,過點B作BE⊥AD于點E,即可得四邊形BEDF是矩形,根據(jù)矩形的性質(zhì)可得BE=DF,BF=DE,在Rt△ABE中,根據(jù)銳角三角函數(shù)可求得AE、BE的長,設(shè)BF=x米,則AD=AE+ED=55+x米,在Rt△BFN中,用x表示NF的長,利用AD=DN列出方程即可解答.
試題解析:
過點B作BF⊥DN于點F,過點B作BE⊥AD于點E,
∵∠D=90°,
∴四邊形BEDF是矩形,
∴BE=DF,BF=DE;
在Rt△ABE中,AE=ABcos30°=110×=55(米)
BE=ABsin30°=×110=55(米)
設(shè)BF=x米,則AD=AE+ED=55+x(米),
在Rt△BFN中,NF=BFtan60°=x(米),
∵∠NAD=45°,
∴AD=DN,
∴DN=DF+NF=55+x(米),
即55+x=x+55,
解得:x=55,
∴DN=55+x≈150(米).
答:山的高度為150米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標(biāo);
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當(dāng)矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,點E是菱形ABCD內(nèi)一點,連結(jié)CE繞點C順時針旋轉(zhuǎn)110°,得到線段CF,連結(jié)BE,DF,若∠E=86°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某九年級制學(xué)校圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:
(1)該校對多少學(xué)生進(jìn)行了抽樣調(diào)查?
(2)本次抽樣調(diào)查中,最喜歡籃球活動的有多少?占被調(diào)查人數(shù)的百分比是多少?
(3)若該校九年級共有200名學(xué)生,圖2是根據(jù)各年級學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學(xué)生中最喜歡跳繩活動的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】熱氣球的探測器顯示,從熱氣球底部A處看一棟高樓頂部的俯角為30°,看這棟樓底部的俯角為60°,熱氣球A處與地面距離為420米,求這棟樓的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)使用計算器求10個數(shù)據(jù)的平均值時,錯將其中一個數(shù)據(jù)20輸入為10,結(jié)果得到平均數(shù)14,那么由此算出的方差與實際方差的差為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛用如圖所示的兩個轉(zhuǎn)盤做配紫色游戲,游戲規(guī)則是:分別旋轉(zhuǎn)兩個轉(zhuǎn)盤,若其中一個轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一個轉(zhuǎn)出了藍(lán)色則可以配成紫色.此時小剛得1分,否則小明得1分.這個游戲規(guī)則對雙方公平嗎?請說明理由.若你認(rèn)為不公平,如何修改規(guī)則才能使游戲?qū)﹄p方公平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,點D為⊙O上一點,連結(jié)AD、OD、BD,∠BAD=∠B=30°.
(1)求證:BD是⊙O的切線.
(2)若OA=8,求OA、OD與圍成的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC=4.一動點P從點B出發(fā),沿BC方向以每秒1個單位長度的速度勻速運(yùn)動,到達(dá)點C即停止.在整個運(yùn)動過程中,過點P作PD⊥BC與Rt△ABC的直角邊相交于點D,延長PD至點Q,使得PD=QD,以PQ為斜邊在PQ左側(cè)作等腰直角三角形PQE.設(shè)運(yùn)動時間為t秒(t>0).
(1)在整個運(yùn)動過程中,設(shè)△ABC與△PQE重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及相應(yīng)的自變量t的取值范圍;
(2)當(dāng)點D在線段AB上時,連接AQ、AP,是否存在這樣的t,使得△APQ成為等腰三角形?若存在,求出對應(yīng)的t的值;若不存在,請說明理由;
(3)當(dāng)t=4秒時,以PQ為斜邊在PQ右側(cè)作等腰直角三角形PQF,將四邊形PEQF繞點P旋轉(zhuǎn),PE與線段AB相交于點M,PF與線段AC相交于點N.試判斷在這一旋轉(zhuǎn)過程中,四邊形PMAN的面積是否發(fā)生變化?若發(fā)生變化,求出四邊形PMAN的面積y與PM的長x之間的函數(shù)關(guān)系式以及相應(yīng)的自變量x的取值范圍;若不發(fā)生變化,求出此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com