【題目】如圖,在菱形ABCD中,∠A=110°,點E是菱形ABCD內(nèi)一點,連結(jié)CE繞點C順時針旋轉(zhuǎn)110°,得到線段CF,連結(jié)BE,DF,若∠E=86°,求∠F的度數(shù).

【答案】86°.

【解析】試題由菱形的性質(zhì)有BC=CD,∠BCD=∠A=110°,根據(jù)旋轉(zhuǎn)的性質(zhì)知CE=CF,∠ECF=∠BCD=110°,于是得到BCE=∠DCF=110°﹣∠DCE,根據(jù)三角形的判定證得BCE≌△DCF,根據(jù)三角形的性質(zhì)即可得到結(jié)論.

試題解析:解:菱形ABCD,∴BC=CD,∠BCD=∠A=110°,由旋轉(zhuǎn)的性質(zhì)知,CE=CF,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE,在BCEDCF中,BC=CD,∠BCE=∠DCF,CE=CF,∴△BCE≌△DCF,∴∠F=∠E=86°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的兩條弦AB、CD交于點E,OE平分∠BED.

(1)求證:AB=CD;

(2)若∠BED=60°,EO=2,求DE﹣AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為圓內(nèi)接四邊形,A為弧BD中點,連接對角線AC,E在AC上,且AE=AB求證:

(1)∠CBE=∠CAD;

(2)AC2=BCCD+AB2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC中頂點Ax軸負(fù)半軸上,B、C在第二象限,對角線交于點D,若C、D兩點在反比例函數(shù)的圖象上,且OABC的面積等于12,則k的值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某小組同學(xué)為了測量對面樓AB的高度,分工合作,有的組員測得兩樓間距離為40米,有的組員在教室窗戶處測得樓頂端A的仰角為30°,底端B的俯角為10°,請你根據(jù)以上數(shù)據(jù),求出樓AB的高度(精確到0.1米)

(參考數(shù)據(jù):sin10°≈0.17, cos10°≈0.98, tan10°≈0.18 ≈1.41 ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠準(zhǔn)備翻建新的大門,廠門要求設(shè)計成軸對稱的拱形曲線.已知廠門的最大寬度AB=12m,最大高度OC=4m,工廠的運輸卡車的高度是3m,寬度是5.8m.現(xiàn)設(shè)計了兩種方案.方案一:建成拋物線形狀(如圖1);方案二:建成圓弧形狀(如圖2.為確保工廠的卡車在通過廠門時更安全,你認(rèn)為應(yīng)采用哪種設(shè)計方案?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個不透明的袋子里裝有除數(shù)字外完全相同的4個小球,上面分別標(biāo)有數(shù)字2,3,45.一人先從袋中隨機摸出一個小球,另一人再從袋中剩下的3個小球中隨機摸出一個小球.若摸出的兩個小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.

1)用列表法或畫樹狀圖法,求小麗參賽的概率.

2)你認(rèn)為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在山腳下的A處測得山頂N的仰角為45°,此時,他剛好與山底D在同一水平線上.然后沿著坡度為30°的斜坡正對著山頂前行110米到達(dá)B處,測得山頂N的仰角為60°.求山的高度.(結(jié)果精確到1米,參考數(shù)據(jù): ≈1.414, ≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC=ABC=45°,CD=,BC=,連接AC、BD,ACAB,BD的長度為_______________.

查看答案和解析>>

同步練習(xí)冊答案