【題目】如圖,在平面直角坐標系xOy中,以原點O為圓心的圓過點A(13,0),直線y=kx﹣3k+4與⊙O交于B、C兩點,則弦BC的長的最小值為( ).
A.22 B.24 C.10 D.12
【答案】B.
【解析】
試題分析:易知直線y=kx﹣3k+4過定點D(3,4),運用勾股定理可求出OD,由條件可求出半徑OB,由于過圓內(nèi)定點D的所有弦中,與OD垂直的弦最短,因此只需運用垂徑定理及勾股定理就可解決問題.對于直線y=kx﹣3k+4,當x=3時,y=4,故直線y=kx﹣3k+4恒經(jīng)過點(3,4),記為點D.過點D作DH⊥x軸于點H,則有OH=3,DH=4,OD==5.∵點A(13,0),∴OA=13,∴OB=OA=13.由于過圓內(nèi)定點D的所有弦中,與OD垂直的弦最短,如圖所示,因此運用垂徑定理及勾股定理可得:BC的最小值為2BD=2=2×=2×12=24.故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 為的直徑,點為上一點,若∠BAC=∠CAM,過點作直線垂直于射線AM,垂足為點D.
(1)試判斷與的位置關系,并說明理由;
(2)若直線與的延長線相交于點, 的半徑為3,并且.求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,)兩點.
(1)求m、k、b的值;
(2)連接OA、OB,計算三角形OAB的面積;
(3)結合圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像分別交y軸、x軸交于點A、B,點P從點B出發(fā),沿射線BA以每秒1個單位的速度出發(fā),設點P的運動時間為t秒.
(1)點P在運動過程中,若某一時刻,△OPA的面積為6,求此時P的坐標;
(2)在整個運動過程中,當t為何值時,△AOP為等腰三角形?(只需寫出t的值,無需解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有四包真空小包裝火腿,每包以標準克數(shù)(450克)為基準,超過的克數(shù)記作正數(shù),不足的克數(shù)記作負數(shù),以下數(shù)據(jù)是記錄結果,其中表示實際克數(shù)最接近標準克數(shù)的是( )
A.+2
B.-3
C.+3
D.+4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知中, 是邊上的點,將繞點旋轉,得到.
(1)當時,求證: .
(2)在(1)的條件下,猜想, , 有怎樣的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是內(nèi)任意一點,=5 cm,點和點分別是射線和射線上的動點,的最小值是5 cm,則的度數(shù)是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com