【題目】一段拋物線Cy=﹣x2+3x+m0x3)與直線yx+1有唯一公共點(diǎn),若m為整數(shù),則符合條件的所有m的值的和為_____

【答案】9

【解析】

分兩種情況進(jìn)行討論,①當(dāng)拋物線與直線相切,△=0求得m=0,②當(dāng)拋物線與直線不相切,但在0≤x≤3上只有一個(gè)交點(diǎn)時(shí),找到兩個(gè)臨界值點(diǎn),可得m=2,3,4,故m=0,2,3,4,然后求得它們的和即可.

解:拋物線Cy=﹣x2+3x+m0≤x≤3)與直線yx+1有唯一公共點(diǎn)

∴①如圖1,拋物線與直線相切,

聯(lián)立解析式x22x+1m0

=(﹣2241m)=0

解得m0

如圖2,拋物線與直線不相切,但在0≤x≤3上只有一個(gè)交點(diǎn)

此時(shí)兩個(gè)臨界值分別為(01)和(3,4)在拋物線上,

∴m的最小值=1,但取不到,c的最大值=4,能取到,

∴1m≤4,

∵m為整數(shù),

∴m2,3,4,

綜上,m0,23,4,

0+2+3+49,

故答案為9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,AB=AC.在平面內(nèi)任取一點(diǎn)D,連接ADAD<AB),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,連接DE,CE,BD.

1)請(qǐng)根據(jù)題意補(bǔ)全圖①;

2)猜測(cè)BDCE的數(shù)量關(guān)系并證明;

3)作射線BD,CE交于點(diǎn)P,把ADE饒點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°,AB=3AD=2時(shí),補(bǔ)全圖形,直接寫(xiě)出PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每位同學(xué)都能感受到日出時(shí)美麗的景色.下圖是一位同學(xué)從照片上剪切下來(lái)的畫(huà)面,圖上太陽(yáng)與海平線交于A﹑B兩點(diǎn),他測(cè)得圖上圓的半徑為5厘米,AB=8厘米,若從目前太陽(yáng)所處位置到太陽(yáng)完全跳出海面的時(shí)間為16分鐘,求圖上太陽(yáng)升起的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+c經(jīng)過(guò)A(﹣6,0)、B(2,0)、C(0,6)三點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合),過(guò)點(diǎn)Py軸的垂線,垂足為點(diǎn)E,連接AE

(1)求拋物線的函數(shù)解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);

(2)如果點(diǎn)P的坐標(biāo)為(x,y),PAE的面積為S,求Sx之間的函數(shù)關(guān)系式,直接寫(xiě)出自變量x的取值范圍,并求出S的最大值;

(3)過(guò)點(diǎn)P(﹣3,m)作x軸的垂線,垂足為點(diǎn)F,連接EF,把PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P,求出P的坐標(biāo).(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)Ax軸上,點(diǎn)B在第一象限內(nèi),∠OAB90°,OAAB,OAB的面積為2,反比例函數(shù)y的圖象經(jīng)過(guò)點(diǎn)B

1)求k的值;

2)已知點(diǎn)P坐標(biāo)為(a0),過(guò)點(diǎn)P作直線OB的垂線l,點(diǎn)OA關(guān)于直線l的對(duì)稱點(diǎn)分別為O,A,若線段OA與反比例函數(shù)y的圖象有公共點(diǎn),直接寫(xiě)出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解全校學(xué)生對(duì)電視節(jié)目的喜愛(ài)情況(新聞、體育、動(dòng)畫(huà)、娛樂(lè)、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)這次被調(diào)查的學(xué)生共有多少人?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂(lè)節(jié)目的有多少人?

(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在同一平面內(nèi),兩條平行高速公路l1l2間有一條“Z”型道路連通,其中AB段與高速公路l130°角,長(zhǎng)為20km;BC段與AB、CD段都垂直,長(zhǎng)為10km,CD段長(zhǎng)為30km,求兩高速公路間的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD和四邊形位似,位似比=2,四邊形A′B′C′D′和四邊形位似,位似比=1.四邊形和四邊形ABCD是位似圖形嗎?位似比是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

(1)(操作發(fā)現(xiàn))

如圖①,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到ADE,連接BD,則∠ABD=____度;

(2)(類比探究)

如圖②,在等邊三角形ABC內(nèi)任取一點(diǎn)P,連接PA,PBPC,求證:以PA,PBPC的長(zhǎng)為三邊必能組成三角形:

(3)(解決問(wèn)題)

如圖③,在邊長(zhǎng)為的等邊三角形ABC內(nèi)有一點(diǎn)P,∠APC=90°,∠BPC=120°,求APC的面積;

(4)(拓展應(yīng)用)

圖④是A,B,C三個(gè)村子位置的平面圖,經(jīng)測(cè)量AC=4,BC=5,∠ACB=30°,PABC內(nèi)的一個(gè)動(dòng)點(diǎn),連接PA,PBPC,求PA+PB+PC的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案