【題目】如圖,在平面直角坐標系中,已知矩形的三個頂點、、.以為頂點的拋物線過點.動點從點出發(fā),以每秒個單位的速度沿線段向點運動,運動時間為秒.過點作軸交拋物線于點,交于點.
直接寫出點的坐標,并求出拋物線的解析式;
當為何值時,的面積最大?最大值為多少?
【答案】(1)(2)1
【解析】
(1)根據(jù)矩形的性質可以寫出點A得到坐標;由頂點A的坐標可設該拋物線的頂點式方程為y=a(x-1)2+4,然后將點C的坐標代入,即可求得系數(shù)a的值(利用待定系數(shù)法求拋物線的解析式);
(2)利用待定系數(shù)法求得直線AC的方程y=-2x+6;由圖形與坐標變換可以求得點P的坐標(1,4-t),據(jù)此可以求得點E的縱坐標,將其代入直線AC方程可以求得點E或點G的橫坐標;然后結合拋物線方程、圖形與坐標變換可以求得GE=4-、點A到GE的距離為,C到GE的距離為2-;最后根據(jù)三角形的面積公式可以求得S△ACG=S△AEG+S△CEG=-(t-2)2+1,由二次函數(shù)的最值可以解得t=2時,S△ACG的最大值為1.
,
由題意知,可設拋物線解析式為
∵拋物線過點,
∴,
解得.
∴拋物線的解析式為,即;
∵,,
∴可求直線的解析式為.
∵點.
∴將代入中,解得點的縱坐標為,
∴把,代入拋物線的解析式中,可求點的縱坐標為,
∴,
又點到的距離為,到的距離為,
即
.
當時,的最大值為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等邊三角形ABC中,D是AB邊上的動點,以CD為一邊,向上作等邊三角形EDC,連接AE,
(1)求證:△DBC≌△EAC
(2)如圖1,令BC=8,AC與DE交于點O,當AE⊥CE時,求AO的長.
(3)如圖2,當圖中的點D運動到邊BA的延長線上,所作△EDC仍為等邊三角形,且有AC⊥CE時,試猜想線段AE與線段CD的位置關系?并說明理由.(自己在圖中畫出圖形后解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知中,厘米,厘米,點為的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經過1秒后,與是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等, 與是否可能全等?若能,求出全等時點Q的運動速度和時間;若不能,請說明理由.
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿三邊運動,求經過多長時間點P與點Q第一次在的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以O為原點的直角坐標系中,A點的坐標為(0,1),直線x=1交x軸于點B。P為線段AB上一動點,作直線PC⊥PO,交直線x=1于點C。過P點作直線MN平行于x軸,交y軸于點M,交直線x=1于點N。
(1)當點C在第一象限時,求證:△OPM≌△PCN;
(2)當點C在第一象限時,設AP長為m,四邊形POBC的面積為S,請求出S與m間的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)當點P在線段AB上移動時,點C也隨之在直線x=1上移動,△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰直角三角形的點P的坐標;如果不可能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近年來,安全快捷、平穩(wěn)舒適的中國高鐵,為世界高速鐵路的發(fā)展樹立了新的標桿,隨著中國特色社會主義進入新時代,作為“中國名片”的高速鐵路也將踏上自己的新征程,這就意味著今后外出旅行的路程與時間將大大縮短,但也有不少游客根據(jù)自已的喜好依然選擇乘坐普通列車,已知從咸寧地到某地的普通列車行駛路程是520千米,是高鐵行駛路程的1.3倍,請完成以下問題:
(1)高鐵行駛的路程為_____千米.
(2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的y與x的部分對應值如下表:
x | -1 | 0 | 1 | 3 |
y | -3 | 1 | 3 | 1 |
下列結論:①拋物線的開口向下;②其圖象的對稱軸為x=1;③當x<1時,函數(shù)值y隨x的增大而增大;④方程ax2+bx+c=0有一個根大于4,其中正確的結論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2016年巴西里約奧運會上,中國女排克服重重困難,憑借頑強的毅力和超強的實力先后戰(zhàn)勝了實力同樣超強的巴西隊,荷蘭隊和塞爾維亞隊,獲得了奧運冠軍,為祖國和人民爭了光.
如圖,已知女排球場的長度OD為18米,位于球場中線處的球網(wǎng)AB的高度為2.24米,一隊員站在點O處發(fā)球,排球從點O的正上方2米的C點向正前方飛去,排球的飛行路線是拋物線的一部分,當排球運行至離點O的水平距離OE為6米時,到達最高點F,以O為原點建立如圖所示的平面直角坐標系.
(1)當排球運行的最大高度為2.8米時,求排球飛行的高度y(單位:米)與水平距離x(單位:米)之間的函數(shù)關系式.
(2)在(1)的條件下,這次所發(fā)的球能夠過網(wǎng)嗎?如果能夠過網(wǎng),是否會出界?請說明理由.
(3)喜歡打排球的李明同學經研究后發(fā)現(xiàn),發(fā)球要想過網(wǎng),球運行的最大高度h(米)應滿足h>2.32,但是他不知道如何確定h的取值范圍,使排球不會出界(排球壓線屬于沒出界),請你幫忙解決并指出使球既能過網(wǎng)又不會出界的h的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C1,平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C1繞某一點旋轉可以得到△A2B2C2,請直接寫出旋轉中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著私家車的增加,城市的交通也越老越擁擠,通常情況下,某段高架橋上車輛的行駛速度y(千米/時)與高架橋上每百米擁有車的數(shù)量x(輛)的關系如圖所示,當x≥10時,y與x成反比例函數(shù)關系,當車行駛速度低于20千米/時,交通就會擁堵,為避免出現(xiàn)交通擁堵,高架橋上每百米擁有車的數(shù)量x應該滿足的范圍是
A. 0x≤40 B. x≥40 C. x>40 D. x<40
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com