【題目】動點A從原點出發(fā)向數(shù)軸負(fù)方向運動,同時,動點B也從原點出發(fā)向數(shù)軸正方向運動,運動到3秒鐘時,兩點相距15個單位長度.已知動點A、B的運動速度比之是3:2(速度單位:1個單位長度/秒).

(1)求兩個動點運動的速度;

(2)A、B兩點運動到3秒時停止運動,請在數(shù)軸上標(biāo)出此時A、B兩點的位置;

(3)若A、B兩點分別從(2)中標(biāo)出的位置再次同時開始在數(shù)軸上運動,運動的速度不變,運動的方向不限,問:經(jīng)過幾秒鐘,A、B兩點之間相距4個單位長度?

【答案】(1)動點A的運動速度為3個單位長度/秒,動點B的運動速度為2個單位長度/;(2)運動到3秒鐘時,點A表示的數(shù)為﹣9,點B表示的數(shù)為6.

(3)經(jīng)過、、1119秒,A、B兩點之間相距4個單位長度.

【解析】試題分析(1)設(shè)點B的速度為2x個單位長度/秒,則點A的速度為3x個單位長度/秒,根據(jù)速度和×?xí)r間=二者間的距離,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;

(2)由路程=速度×?xí)r間結(jié)合運動方向可得出運動到3秒鐘時點A、B所表示的數(shù),再將其標(biāo)記在數(shù)軸上即可;

(3)設(shè)運動的時間為t秒,由A、B兩點的速度關(guān)系可分A、B兩點向數(shù)軸正方向運動及A、B兩點相向而行兩種情況,根據(jù)A、B兩點的運動速度結(jié)合A、B兩點之間相距4個單位長度,即可得出關(guān)于t的含絕對值符號的一元一次方程,解之即可得出結(jié)論.

試題解析:(1)設(shè)點B的速度為2x個單位長度/秒,則點A的速度為3x個單位長度/秒,

根據(jù)題意得:3×(2x+3x)=15,

解得:x=1,

∴3x=3,2x=2,

答:動點A的運動速度為3個單位長度/秒,動點B的運動速度為2個單位長度/

(2)3×3=9,2×3=6,

∴運動到3秒鐘時,點A表示的數(shù)為﹣9,點B表示的數(shù)為6;

(3)設(shè)運動的時間為t

當(dāng)A、B兩點向數(shù)軸正方向運動時,有|3t﹣2t﹣15|=4,

解得:t1=11,t2=19;

當(dāng)A、B兩點相向而行時,有|15﹣3t﹣2t|=4,

解得:t3=t4=,

答:經(jīng)過、、1119秒,A、B兩點之間相距4個單位長度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,bc是三角形ABC的三邊的長,且滿足a22b2c22b(ac)0,試判斷此三角形三邊的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:某校一塊長為2a米的正方形空地是七年級四個班的清潔區(qū),其中分給七年級(1)班的清潔區(qū)是一塊邊長為(a﹣2b)米的正方形,(0<b<),
(1)分別求出七(2)、七(3)班的清潔區(qū)的面積;
(2)七(4)班的清潔區(qū)的面積比七(1)班的清潔區(qū)的面積多多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個矩形(如圖乙),根據(jù)兩個圖形中陰影部分的面積相等,可以驗證(
A.(a+b)2=a2+2ab+b2
B.(a﹣b)2=a2﹣2ab+b2
C.a2﹣b2=(a+b)(a﹣b)
D.(a+2b)(a﹣b)=a2+ab﹣2b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式2(x﹣2)≤x﹣2的非負(fù)整數(shù)解的個數(shù)為_____個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠12,BAC20°,ACF80°.

(1)求∠2的度數(shù);

(2)FCAD平行嗎?為什么?

(3)根據(jù)以上結(jié)論,你能確定∠ADB與∠FCB的大小關(guān)系嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)34,68,89的中位數(shù)和眾數(shù)分別是( 。

A.7,8B.78,5C.58D.7,5,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A(x1,y1),B(x2,y2),若x1x2+y1y2=0,則稱A和B互為正交點,即A叫做B的正交點,B也叫做A的正交點。例如:A(1,1),B(2,-2),有1×2+1×(-2)=0,故A和B互為正交點。

(1)在直角坐標(biāo)系xOy中,O為坐標(biāo)原點,判斷下列說法是否正確(對的寫“正確”,錯的寫“錯誤”)。
①原點是任意點的正交點。
②x軸上的任意點與y軸上的任意點都互為正交點。
③點M和N互為正交點,則∠MON=90°.
④點M和N互為正交點,則OM=ON。
(2)點P和Q互為正交點,P的坐標(biāo)為(2,-3),Q的坐標(biāo)為(6,m),求m的值。
(3)點M是直線y=2x+1上的一點,點M和N(3,-1)互為正交點,求MN的長度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明與小剛規(guī)定了一種新運算*:若a、b是有理數(shù),則a*b=3a﹣2b.小明計算出2*5=﹣4,請你幫小剛計算2*(﹣5)=

查看答案和解析>>

同步練習(xí)冊答案