【題目】如圖1,拋物線y=ax2-3ax-2交x軸于A、B(A左B右)兩點(diǎn),交y軸于點(diǎn)C,過C作CD∥x軸,交拋物線于點(diǎn)D,E(-2,3)在拋物線上.
(1)求拋物線的解析式;
(2)P為第一象限拋物線上一點(diǎn),過點(diǎn)P作PF⊥CD,垂足為F,連接PE交y軸于G,求證:FG∥DE;
(3)如圖2,在(2)的條件下,過點(diǎn)F作FM⊥PE于M.若∠OFM=45°,求P點(diǎn)坐標(biāo).
【答案】(1)y=x2-x-2;(2)見解析;(3)點(diǎn)P坐標(biāo)為(6,7)
【解析】
(1)把點(diǎn)E坐標(biāo)代入拋物線解析式即求得a的值;
(2)由拋物線解析式求點(diǎn)A、B、C、D的坐標(biāo),直接求得直線DE解析式為y=-x+1.設(shè)點(diǎn)P橫坐標(biāo)為t,即得到點(diǎn)F(t,-2).把t當(dāng)常數(shù)用待定系數(shù)法求直線PE解析式,進(jìn)而求得用t表示的點(diǎn)G縱坐標(biāo),再用待定系數(shù)法求直線FG解析式,解得FG解析式的一次項系數(shù)為-1,與直線DE相等,所以FG∥DE;
(3)延長FO、PE相交于點(diǎn)N,由FM⊥PE于M且∠OFM=45°可證得△MNF為等腰直角三角形,故有FM=MN.過點(diǎn)M作MG⊥PF于點(diǎn)G,過點(diǎn)N作NH⊥PM于點(diǎn)H,即構(gòu)造出△FGM≌△MHN,進(jìn)而有FG=MH,MG=NH.設(shè)點(diǎn)M橫坐標(biāo)為m,由(2)求得的直線PE解析式可得M的縱坐標(biāo),進(jìn)而得到用t和m表示的MG、FG.求直線OF解析式,聯(lián)立直線OF與直線PE求得用t表示的交點(diǎn)N坐標(biāo),進(jìn)而得到用t和m表示的MH、NH.代入FG=MH,MG=NH即得到關(guān)于t、m的二元方程組,解方程組并考慮t的范圍即求得點(diǎn)P坐標(biāo).
解:(1)∵E(-2,3)在拋物線y=ax2-3ax-2上
∴4a+6a-2=3
解得:a=
∴拋物線解析式為y=x2-x-2
(2)證明:∵y=x2-x-2=0時,解得:x1=-1,x2=4
∴A(-1,0),B(4,0)
∵x=0時,y=x2-x-2=-2
∴C(0,-2)
∵點(diǎn)D在拋物線上,且CD∥x軸
∴D(3,-2)
設(shè)直線DE解析式為y=kx+b
∴解得:
∴直線DE:y=-x+1
∵點(diǎn)P為第一象限拋物線上一點(diǎn)
∴設(shè)點(diǎn)P坐標(biāo)為(t,t2-t-2)(t>4)
設(shè)直線PE解析式為y=cx+d
∴直線PE:y=x+t-2,直線PE與y軸交點(diǎn)G(0,t-2)
∵PF⊥CD于點(diǎn)F
∴F(t,-2)
設(shè)直線FG解析式為y=ex+t-2
把點(diǎn)F代入得:te+t-2=-2
解得:e=-1
∴FG∥DE
(3)延長FO、PE相交于點(diǎn)N,過點(diǎn)M作MG⊥PF于點(diǎn)G,過點(diǎn)N作NH⊥PM于點(diǎn)H
∴∠FGM=∠MHN=90°
∵FM⊥PE于M
∴∠FMN=90°
∴∠FMG+∠NMH=∠MNH+∠NMH=90°
∴∠FMG=∠MNH
∵∠OFM=45°
∴∠MNF=180°-∠FMN-∠OFM=45°
∴FM=MN
在△FGM與△MHN中
∴△FGM≌△MHN(AAS)
∴FG=MH,MG=NH
∵F(t,-2)
∴直線OF:y=-x
∵點(diǎn)M在直線PE:y=x+t-2上
∴設(shè)M(m,m+t-2)
∴MG=t-m,FG=m+t-2-(-2)=m+t
∵解得:
∴N(,)
∴MH=m-,NH=m+t-2-
∴
解得:(舍去)
∴yP=×36-×6-2=7
∴點(diǎn)P坐標(biāo)為(6,7).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】非洲豬瘟疫情發(fā)生以來,豬肉市場供應(yīng)階段性偏緊和豬價大幅波動時有發(fā)生,為穩(wěn)定生豬生產(chǎn),促進(jìn)轉(zhuǎn)型升級,增強(qiáng)豬肉供應(yīng)保障能力,國務(wù)院辦公廳于2019年9月印發(fā)了《關(guān)于穩(wěn)定生豬生產(chǎn)促進(jìn)轉(zhuǎn)型升級的意見》,某生豬飼養(yǎng)場積極響應(yīng)國家號召,努力提高生產(chǎn)經(jīng)營管理水平,穩(wěn)步擴(kuò)大養(yǎng)殖規(guī)模,增加豬肉供應(yīng)量。該飼養(yǎng)場2019年每月生豬產(chǎn)量y(噸)與月份x(,且x為整數(shù))之間的函數(shù)關(guān)系如圖所示.
(1)請直接寫出當(dāng)(x為整數(shù))和(x為整數(shù))時,y與x的函數(shù)關(guān)系式;
(2)若該飼養(yǎng)場生豬利潤P(萬元/噸)與月份x(,且x為整數(shù))滿足關(guān)系式:,請問:該飼養(yǎng)場哪個月的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,經(jīng)順時針旋轉(zhuǎn)后與重合.
旋轉(zhuǎn)中心是點(diǎn)________,旋轉(zhuǎn)了________度;
如果,,求:四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線的部分圖象,其頂點(diǎn)坐標(biāo)是,給出下列結(jié)論:①;②;③;④;⑤.其中正確結(jié)論的個數(shù)是( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某學(xué)校七年級4個班共180人的體質(zhì)健康情況,從各班分別抽取同樣數(shù)量的男生和女生組成一個樣本,如圖是根據(jù)樣本繪制的條形圖和扇形圖.
(1)本次抽查的樣本容量是______.
(2)請補(bǔ)全條形圖和扇形圖中的百分?jǐn)?shù);
(3)請你估計全校七年級共有多少人優(yōu)秀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)D是△ABC中AC的中點(diǎn),AE∥BC,ED交AB于點(diǎn)G,交BC的延長線于點(diǎn)F.
(1)求證:△GAE∽△GBF;
(2)求證:AE=CF;
(3)若BG:GA=3:1,BC=8,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點(diǎn)A測得大樹頂端B的仰角是45°,沿斜坡走米到達(dá)斜坡上點(diǎn)D,在此處測得樹頂端點(diǎn)B的仰角為30°,且斜坡AF的坡比為1︰2.則小明從點(diǎn)A走到點(diǎn)D的過程中,他上升的高度為____米;大樹BC的高度為____米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCO的頂點(diǎn)B、C在第二象限,點(diǎn)A(﹣3,0),反比例函數(shù)y=(k<0)圖象經(jīng)過點(diǎn)C和AB邊的中點(diǎn)D,若∠B=α,則k的值為( )
A. ﹣4tanαB. ﹣2sinαC. ﹣4cosαD. ﹣2tan
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com