【題目】近日,嶗山區(qū)教體局對(duì)參加2018年嶗山區(qū)禁毒知識(shí)競(jìng)賽的2500名初中學(xué)生的初試成績(jī)(成績(jī)均為整數(shù))進(jìn)行一次抽樣調(diào)查,所得數(shù)據(jù)如下表:
成績(jī)分組 | 60.5~70.5 | 70.5~80.5 | 80.5~90.5 | 90.5~100.5 |
頻數(shù) | 50 | 150 | 200 | 100 |
(1)抽取樣本的總?cè)藬?shù);
(2)根據(jù)表中數(shù)據(jù),補(bǔ)全圖中頻數(shù)分布直方圖;
(3)若規(guī)定初試成績(jī)?cè)?/span>90分以上(不包括90分)的學(xué)生進(jìn)入決賽,則全區(qū)進(jìn)入決賽的初中學(xué)生約有多少人.
【答案】(1)500;(2)見(jiàn)解析;(3)500
【解析】
(1)把表中的頻數(shù)相加即為抽取樣本的總?cè)藬?shù);
(2)根據(jù)表中數(shù)據(jù),補(bǔ)全圖中頻數(shù)分布直方圖;
(3)用樣本中成績(jī)?cè)?/span>90分以上(不包括90分)所占百分比去估計(jì)總體.
解:(1)抽取樣本的容量=50+150+200+100=500;
(2)根據(jù)表中數(shù)據(jù),補(bǔ)全圖中頻數(shù)分布直方圖;
(3)若規(guī)定初試成績(jī)?cè)?/span>90分以上(不包括90分)的學(xué)生進(jìn)入決賽,則全縣進(jìn)入決賽的學(xué)生約為2500×=500人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線BF垂直于直線CE于點(diǎn)F,交CD于點(diǎn)G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點(diǎn)H,交CD的延長(zhǎng)線于點(diǎn)M(如圖2),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)電子廠在廣告中都聲稱他們的某種電子產(chǎn)品在正常情況下的使用壽命都是5年.質(zhì)檢部門對(duì)這兩家銷售的產(chǎn)品的使用壽命進(jìn)行了跟蹤調(diào)查,統(tǒng)計(jì)結(jié)果如下:(單位:年)
甲廠:3,4,5,6,7 乙廠:4,4,5,6,6
(1)分別求出甲、乙兩廠的該種電子產(chǎn)品在正常情況下的使用壽命的平均數(shù)和方差;
(2)如果你是顧客,你會(huì)選購(gòu)哪家電子廠的產(chǎn)品?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車運(yùn)輸公司根據(jù)實(shí)際需要計(jì)劃購(gòu)買大、中型兩種客車共20輛,已知大型客車每輛62萬(wàn)元,中型客車每輛40萬(wàn)元,設(shè)購(gòu)買大型客車x(輛),購(gòu)車總費(fèi)用為y(萬(wàn)元).
(1)求y與x的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)若購(gòu)買中型客車的數(shù)量少于大型客車的數(shù)量,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某區(qū)初二年級(jí)數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)將有關(guān)問(wèn)題補(bǔ)充完整.
收集數(shù)據(jù):隨機(jī)抽取甲乙兩所學(xué)校的20名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述數(shù)據(jù):按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)
分段 學(xué)校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
統(tǒng)計(jì)量 學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
經(jīng)統(tǒng)計(jì),表格中m的值是 .
得出結(jié)論:
a若甲學(xué)校有400名初二學(xué)生,估計(jì)這次考試成績(jī)80分以上人數(shù)為 .
b可以推斷出 學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為 .(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,CD⊥BC于點(diǎn)C,交∠ABC的平分線于點(diǎn)D,AE平分∠BAC交BD于點(diǎn)E,過(guò)點(diǎn)E作EF∥BC交AC于點(diǎn)F,連接DF.
(1)補(bǔ)全圖1;
(2)如圖1,當(dāng)∠BAC=90°時(shí),
①求證:BE=DE;
②寫出判斷DF與AB的位置關(guān)系的思路(不用寫出證明過(guò)程);
(3)如圖2,當(dāng)∠BAC=α時(shí),直接寫出α,DF,AE的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為,點(diǎn)N的坐標(biāo)為,且,,以MN為邊構(gòu)造菱形,若該菱形的兩條對(duì)角線分別平行于x軸,y軸,則稱該菱形為邊的“坐標(biāo)菱形”.
(1)已知點(diǎn)A(2,0),B(0,2),則以AB為邊的“坐標(biāo)菱形”的最小內(nèi)角為_(kāi)______;
(2)若點(diǎn)C(1,2),點(diǎn)D在直線y=5上,以CD為邊的“坐標(biāo)菱形”為正方形,求直線CD 表達(dá)式;
(3)⊙O的半徑為,點(diǎn)P的坐標(biāo)為(3,m) .若在⊙O上存在一點(diǎn)Q,使得以QP為邊的“坐標(biāo)菱形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在密碼學(xué)中,直接可以看到內(nèi)容為明碼,對(duì)明碼進(jìn)行某種處理后得到的內(nèi)容為密碼、有一種密碼,將英文26個(gè)字母a,b,c…,z(不論大小寫)依次對(duì)應(yīng)1,2,3,…,26這26個(gè)自然數(shù).當(dāng)明碼字母對(duì)應(yīng)的序號(hào)x為奇數(shù)時(shí),密碼字母對(duì)應(yīng)的序號(hào)是;當(dāng)明碼字母對(duì)應(yīng)的序號(hào)x為偶數(shù)時(shí),密碼字母對(duì)應(yīng)的序號(hào)是+14.按上述規(guī)定,將明碼“hope”譯成密碼是( )
字母 | a | b | c | d | e | f | g | h | i | j | k | l | m |
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
字母 | n | o | p | q | r | s | t | u | v | w | x | y | z |
序號(hào) | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
A.gawqB.rivdC.giheD.hope
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com