【題目】文具店某種文具進(jìn)價(jià)為每件20元,市場(chǎng)調(diào)查反映:當(dāng)售價(jià)為每件30元時(shí),平均每星期可售出140件;而昂每件售價(jià)漲1元,平均每星期少售出10件,設(shè)每件漲價(jià)元,平均每星期的總利潤(rùn)為元.

1)寫(xiě)出的函數(shù)關(guān)系式,并求出自變量的取值范圍;

2)如何定價(jià)才能使每星期的利潤(rùn)最大?且每星期的最大利潤(rùn)是多少?

【答案】1();(2)定價(jià)為32元時(shí),每星期獲得的利潤(rùn)最大,最大利潤(rùn)為1440元.

【解析】

1)根據(jù)銷(xiāo)售總利潤(rùn)等于單件利潤(rùn)乘以銷(xiāo)售量即可求解;
2)根據(jù)二次函數(shù)的頂點(diǎn)坐標(biāo)即可求解.

解:(1

答:的函數(shù)關(guān)系式為

自變量的取值范圍是.

2

所以頂點(diǎn)坐標(biāo)為

當(dāng)時(shí),有最大值為1440

答:定價(jià)為32元時(shí),每星期獲得的利潤(rùn)最大,最大利潤(rùn)為1440.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程有唯一實(shí)數(shù)解,且反比例函數(shù)的圖象在每個(gè)象限內(nèi)的增大而增大,那么反比例函數(shù)的關(guān)系式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某果園的工人需要摘蘋(píng)果園和梨園的果實(shí),蘋(píng)果園的果實(shí)是梨園的倍,如果前三天工人都在蘋(píng)果園摘果實(shí),第四天,的工人到梨園摘果實(shí),剩下的工人仍在蘋(píng)果園摘果實(shí),則第四天結(jié)束后蘋(píng)果園的果實(shí)全部摘完,梨園剩下的果實(shí)正好是名工人天的工作量.如果前三天工人都在蘋(píng)果園摘果實(shí),要使蘋(píng)果和梨同時(shí)摘完,則第四天開(kāi)始,再外請(qǐng)一個(gè)工人的情況下,應(yīng)該安排___人摘蘋(píng)果.(假定工人們每人每天摘果實(shí)的數(shù)量是相等的,且每人每天的工作時(shí)間相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高學(xué)生書(shū)寫(xiě)漢字的能力,增強(qiáng)保護(hù)漢字的意識(shí),某校舉辦了漢字聽(tīng)寫(xiě)大賽活動(dòng).經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽(tīng)寫(xiě)50個(gè)漢字,若每正確聽(tīng)寫(xiě)出一個(gè)漢字得1分,最終沒(méi)有學(xué)生得分低于25分,也沒(méi)有學(xué)生得滿(mǎn)分.根據(jù)測(cè)試成績(jī)繪制出頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

請(qǐng)結(jié)合圖標(biāo)完成下列各題:

1)求表中a的值;

2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;

3)若本次決賽的前5名是3名女生A、B、C2名男生M、N,若從3名女生和2名男生中分別抽取1人參加市里的比賽,試用列表法或畫(huà)樹(shù)狀圖的方法求出恰好抽到女生A和男生M的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程(a﹣1x2+2x+a﹣1=0

1)若該方程有一根為2,求a的值及方程的另一根;

2)當(dāng)a為何值時(shí),方程僅有一個(gè)根?求出此時(shí)a的值及方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:

a+b+c0;ab+c1abc0;④9a3b+c0ca1.其中所有正確結(jié)論的序號(hào)是(  )

A.①②B.①③④C.①②③④D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角△OEF在坐標(biāo)系中,有E(02),F(20),將直角△OEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到△ADE,且A在第一象限內(nèi),拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)AE.且2a+3b+5=0

1)求拋物線(xiàn)的解析式.

2)過(guò)ED的中點(diǎn)O'O'BOEB,O'CODC,求證:OBO'C為正方形.

3)如果點(diǎn)PE開(kāi)始沿EA邊以每秒2厘米的速度向點(diǎn)A移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)A沿AD邊以每秒1厘米的速度向點(diǎn)D移動(dòng),當(dāng)點(diǎn)P移動(dòng)到點(diǎn)A時(shí),PQ兩點(diǎn)同時(shí)停止,且過(guò)PGPAE,交DE于點(diǎn)G,設(shè)移動(dòng)的開(kāi)始后為t秒.

S=PQ2(厘米),試寫(xiě)出St之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍?

當(dāng)S取最小時(shí),在拋物線(xiàn)上是否存在點(diǎn)R,使得以PA,Q,R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】移動(dòng)通信公司建設(shè)的鋼架信號(hào)塔(如圖1),它的一個(gè)側(cè)面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過(guò)點(diǎn)A、點(diǎn)B作兩腰的垂線(xiàn)段,垂足分別為B1,A1,再過(guò)A1,B1分別作兩腰的垂線(xiàn)段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3,A3,….若AB3米,sinα,則水平鋼條A2B2的長(zhǎng)度為( 。

A. B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊長(zhǎng)方形的土地,寬為120m,建筑商把它分成甲、乙、丙三部分,甲和乙均為正方形,現(xiàn)計(jì)劃甲建住宅區(qū)乙建商場(chǎng),丙地開(kāi)辟成面積為3200m2的公園.若設(shè)這塊長(zhǎng)方形的土地長(zhǎng)為xm.那么根據(jù)題意列出的方程是_____.(將答案寫(xiě)成ax2+bx+c=0(a≠0)的形式)

查看答案和解析>>

同步練習(xí)冊(cè)答案