【題目】課堂上,數(shù)學(xué)老師提出了如下問題:

如圖1,若線段AD為△ABC的角平分線,請問一定成立嗎?

小明和小芳分別作了如下探究:

小明發(fā)現(xiàn):如圖2,當(dāng)△ABC為直角三角形時,且∠C=90°,∠CAB=60°時,結(jié)論成立;

小芳發(fā)現(xiàn):如圖3,當(dāng)△ABC為任意三角形時,過點CAB的平行線,交AD的延長線于點E,利用此圖可以證明成立.

【答案】1)(2)(3

【解析】試題分析:(1設(shè)CD的長為aRtCAB中,由角平分線的定義,可得∠B= 30°,由正切定義可得AC、AB、CB以及DB的長,即可得證;

2)由兩直線平行,內(nèi)錯角相等可得∠E=EAB,B=ECB,即可證明CED∽△BAD,由相似三角形的性質(zhì)得出,由等角對等邊得出CE=CA,即可得證.

試題解析:(1)設(shè)CD的長為a

RtCAB中,∠CAB=60°AD平分∠CAB,

∴∠B=CAD=DAB= 30°,

DB=BC-CD=3a-a=2a

2CEAB

∴∠E=EAB,B=ECB,

∴△CED∽△BAD,

,

∵∠E=EAB,EAB=CAD,

∴∠E=CAD

CE=CA

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場銷售某種冰箱,該種冰箱每臺進價為2500元.已知原銷售價為每臺2900元時,平均每天能售出8臺.若在原銷售價的基礎(chǔ)上每臺降價50元,則平均每天可多售出4臺.設(shè)每臺冰箱的實際售價比原銷售價降低了x元.

1)填表(不需化簡):


每天的銷售量/

每臺銷售利潤/

降價前

8

400

降價后



2)商場為使這種冰箱平均每天的銷售利潤達到5000元,則每臺冰箱的實際售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一張面積為630cm2的矩形張貼廣告,它的上、下、左、右空白部分的寬度都是2cm.設(shè)印刷部分(矩形)的一邊為xcm,印刷面積為ycm2.

(1)試用x的代數(shù)式表示y;

(2)若印刷面積為442cm2時,求張貼廣告的長和寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象經(jīng)過點,與軸交于點

求出一次函數(shù)的表達式;

求出點的坐標(biāo),并在軸上找到一點,使得最小,并求出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式、不等式組

1)解不等式:并把它的解集表示在數(shù)軸上.

2)解不等式組:,并求出這個不等式組的所有整數(shù)解.(要求利用數(shù)軸解不等式組)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,FAM的中點,EFAM,垂足為F,交AD的延長線于點E,交DC于點N

(1)求證:△ABM ∽△EFA;

(2)若AB=12,BM=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AD是高,CE是中線,點GCE的中點,DGCE,點G為垂足.

1)求證:DCBE;

2)若∠AEC69°,求∠EDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形不平行,為四邊形的對角線,分別是的中點下列結(jié)論:①;②四邊形是矩形;③平分;⑤四邊形是菱形.其中正確的個數(shù)是 ( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案