精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,AC=BCCD=CE,ACB=DCE=α,AD、BE相交于點M,連接CM

(1)求證:BE=AD;并用含α的式子表示∠AMB的度數;

(2)當α=90°時,取AD,BE的中點分別為點P、Q,連接CP,CQ,PQ,如圖2,判斷CPQ的形狀,并加以證明.

【答案】(1)α;(2)CPQ為等腰直角三角形.證明見解析.

【解析】

試題(1)由CA=CB,CD=CE,ACB=DCE=α,利用SAS即可判定ACD≌△BCE;

(2)根據ACD≌△BCE,得出∠CAD=CBE,再根據∠AFC=BFH,即可得到∠AMB=ACB=α;

(3)先根據SAS判定ACP≌△BCQ,再根據全等三角形的性質,得出CP=CQ,ACP=BCQ,最后根據∠ACB=90°即可得到∠PCQ=90°,進而得到PCQ為等腰直角三角形.

試題解析:(1)證明:如圖①,∵∠ACB=DCE=α,

∴∠ACD=BCE.ACDBCE中,

∴△ACD≌△BCE(SAS),

BE=AD.

(2)解:如圖①,∵△ACD≌△BCE,

∴∠CAD=CBE.

∵∠BAC+ABC=180°-α,

∴∠BAM+ABM=180°-α,

∴∠AMB=180°-(180°-α)=α.

(3)解:CPQ為等腰直角三角形.

證明:如圖②,由(1)可得,BE=AD.

AD,BE的中點分別為點P,Q,

AP=BQ.

∵△ACD≌△BCE,

∴∠CAP=CBQ.ACPBCQ中,

∴△ACP≌△BCQ(SAS),

CP=CQ且∠ACP=BCQ.

又∵∠ACP+PCB=90°,

∴∠BCQ+PCB=90°,

∴∠PCQ=90°,

∴△CPQ為等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,把正六邊形各邊按同一方向延長,使延長的線段與原正六邊形的邊長相等,順次連接這六條線段外端點可以得到一個新的正六邊形,…,重復上述過程,經過2018次后,所得到的正六邊形邊長是原正六邊形邊長的(
A.( 2016
B.( 2017
C.( 2018
D.( 2019

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知直線y=kx+b經過點A(0,6),且平行于直線y=-2x.

1求該函數的解析式,并畫出它的圖象;

2如果這條直線經過點P(m,2),求m的值;

3若O為坐標原點,求直線OP的解析式;

4求直線y=kx+b和直線OP與坐標軸所圍成的圖形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】從邊長為 a 的正方形內去掉一個邊長為 b 的小正方形(如圖1),然后將剩余部分剪拼成一個矩形(如圖2),上述操作所能驗證的等式是(  。

A. (a-b)2=a2-2ab+b2 B. a2+ab=a (a+b) C. (a+b)2=a2+2ab+b2 D. a2-b2=(a+b)(a-b)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為獎勵在演講比賽中獲獎的同學,班主任派學習委員小明為獲獎同學買獎品要求每人一件小明到文具店看了商品后,決定獎品在鋼筆和筆記本中選擇若買4個筆記本和2支鋼筆,則需86元;若買3個筆記本和1支鋼筆,則需57元.

(1)求購買一個筆記本、一支鋼筆分別為多少元;

(2)售貨員提示,買鋼筆有優(yōu)惠具體方法是:如果買鋼筆超過10支,那么超出部分可以享受8折優(yōu)惠.買15支鋼筆,20個筆記本,一共需要花多少錢?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解答題
(1)如圖1,在圓內接正六邊形ABCDEF中,半徑OC=4,求正六邊形的邊長.
(2)如圖2,在△ABC中,AB=13,BC=10,BC邊上的中線AD=12.求證:AB=AC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩直線AB,CD相交于點O,已知OE平分BOD,且AOC:AOD=3:7,

1DOE的度數;

2若OFOE,求COF的度數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有以下3句話:①AB∥CD,②∠B=∠C、③∠E=∠F、請以其中2句話為條件,第三句話為結論構造命題.

(1)你構造的是哪幾個命題?

(2)你構造的命題是真命題還是假命題?請加以證明.

查看答案和解析>>

同步練習冊答案