【題目】拋物線y=(x﹣3)(x+1)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為頂點(diǎn).

(1)求點(diǎn)B及點(diǎn)D的坐標(biāo).
(2)連結(jié)BD,CD,拋物線的對(duì)稱軸與x軸交于點(diǎn)E.
①若線段BD上一點(diǎn)P,使∠DCP=∠BDE,求點(diǎn)P的坐標(biāo).
②若拋物線上一點(diǎn)M,作MN⊥CD,交直線CD于點(diǎn)N,使∠CMN=∠BDE,求點(diǎn)M的坐標(biāo).

【答案】
(1)

解:∵拋物線y=(x﹣3)(x+1)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),

∴當(dāng)y=0時(shí),(x﹣3)(x+1)=0,

解得x=3或﹣1,

∴點(diǎn)B的坐標(biāo)為(3,0).

∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,

∴頂點(diǎn)D的坐標(biāo)為(1,﹣4)


(2)

解:①如圖.

∵拋物線y=(x﹣3)(x+1)=x2﹣2x﹣3與與y軸交于點(diǎn)C,

∴C點(diǎn)坐標(biāo)為(0,﹣3).

∵對(duì)稱軸為直線x=1,

∴點(diǎn)E的坐標(biāo)為(1,0).

連接BC,過(guò)點(diǎn)C作CH⊥DE于H,則H點(diǎn)坐標(biāo)為(1,﹣3),

∴CH=DH=1,

∴∠CDH=∠BCO=∠BCH=45°,

∴CD= ,CB=3 ,△BCD為直角三角形.

分別延長(zhǎng)PC、DC,與x軸相交于點(diǎn)Q,R.

∵∠BDE=∠DCP=∠QCR,

∠CDB=∠CDE+∠BDE=45°+∠DCP,

∠QCO=∠RCO+∠QCR=45°+∠DCP,

∴∠CDB=∠QCO,

∴△BCD∽△QOC,

= = ,

∴OQ=3OC=9,即Q(﹣9,0).

∴直線CQ的解析式為y=﹣ x﹣3,

直線BD的解析式為y=2x﹣6.

由方程組 ,解得

∴點(diǎn)P的坐標(biāo)為( ,﹣ );

②(Ⅰ)當(dāng)點(diǎn)M在對(duì)稱軸右側(cè)時(shí).

若點(diǎn)N在射線CD上,如備用圖1,延長(zhǎng)MN交y軸于點(diǎn)F,過(guò)點(diǎn)M作MG⊥y軸于點(diǎn)G.

∵∠CMN=∠BDE,∠CNM=∠BED=90°,

∴△MCN∽△DBE,

= = ,

∴MN=2CN.

設(shè)CN=a,則MN=2a.

∵∠CDE=∠DCF=45°,

∴△CNF,△MGF均為等腰直角三角形,

∴NF=CN=a,CF= a,

∴MF=MN+NF=3a,

∴MG=FG= a,

∴CG=FG﹣FC= a,

∴M( a,﹣3+ a).

代入拋物線y=(x﹣3)(x+1),解得a= ,

∴M( ,﹣ );

若點(diǎn)N在射線DC上,如備用圖2,MN交y軸于點(diǎn)F,過(guò)點(diǎn)M作MG⊥y軸于點(diǎn)G.

∵∠CMN=∠BDE,∠CNM=∠BED=90°,

∴△MCN∽△DBE,

= =

∴MN=2CN.

設(shè)CN=a,則MN=2a.

∵∠CDE=45°,

∴△CNF,△MGF均為等腰直角三角形,

∴NF=CN=a,CF= a,

∴MF=MN﹣NF=a,

∴MG=FG= a,

∴CG=FG+FC= a,

∴M( a,﹣3+ a).

代入拋物線y=(x﹣3)(x+1),解得a=5 ,

∴M(5,12);

(Ⅱ)當(dāng)點(diǎn)M在對(duì)稱軸左側(cè)時(shí).

∵∠CMN=∠BDE<45°,

∴∠MCN>45°,

而拋物線左側(cè)任意一點(diǎn)K,都有∠MCN<45°,

∴點(diǎn)M不存在.

綜上可知,點(diǎn)M坐標(biāo)為( ,﹣ )或(5, 12).


【解析】(1)解方程(x﹣3)(x+1)=0,求出x=3或﹣1,根據(jù)拋物線y=(x﹣3)(x+1)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),確定點(diǎn)B的坐標(biāo)為(3,0);將y=(x﹣3)(x+1)配方,寫成頂點(diǎn)式為y=x2﹣2x﹣3=(x﹣1)2﹣4,即可確定頂點(diǎn)D的坐標(biāo);(2)①根據(jù)拋物線y=(x﹣3)(x+1),得到點(diǎn)C、點(diǎn)E的坐標(biāo).連接BC,過(guò)點(diǎn)C作CH⊥DE于H,由勾股定理得出CD= ,CB=3 ,證明△BCD為直角三角形.分別延長(zhǎng)PC、DC,與x軸相交于點(diǎn)Q,R.根據(jù)兩角對(duì)應(yīng)相等的兩三角形相似證明△BCD∽△QOC,則 = = ,得出Q的坐標(biāo)(﹣9,0),運(yùn)用待定系數(shù)法求出直線CQ的解析式為y=﹣ x﹣3,直線BD的解析式為y=2x﹣6,解方程組 ,即可求出點(diǎn)P的坐標(biāo);②分兩種情況進(jìn)行討論:(Ⅰ)當(dāng)點(diǎn)M在對(duì)稱軸右側(cè)時(shí).若點(diǎn)N在射線CD上,如備用圖1,延長(zhǎng)MN交y軸于點(diǎn)F,過(guò)點(diǎn)M作MG⊥y軸于點(diǎn)G,先證明△MCN∽△DBE,由相似三角形對(duì)應(yīng)邊成比例得出MN=2CN.設(shè)CN=a,再證明△CNF,△MGF均為等腰直角三角形,然后用含a的代數(shù)式表示點(diǎn)M的坐標(biāo),將其代入拋物線y=(x﹣3)(x+1),求出a的值,得到點(diǎn)M的坐標(biāo);若點(diǎn)N在射線DC上,同理可求出點(diǎn)M的坐標(biāo);(Ⅱ)當(dāng)點(diǎn)M在對(duì)稱軸左側(cè)時(shí).由于∠BDE<45°,得到∠CMN<45°,根據(jù)直角三角形兩銳角互余得出∠MCN>45°,而拋物線左側(cè)任意一點(diǎn)K,都有∠MCN<45°,所以點(diǎn)M不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1⊥x軸于點(diǎn)A(2,0),點(diǎn)B是直線l1上的動(dòng)點(diǎn).直線l2:y=x+1交l1于點(diǎn)C,過(guò)點(diǎn)B作直線l3垂直于l2 , 垂足為D,過(guò)點(diǎn)O,B的直線l4交l2于點(diǎn)E,當(dāng)直線l1 , l2 , l3能圍成三角形時(shí),設(shè)該三角形面積為S1 , 當(dāng)直線l2 , l3 , l4能圍成三角形時(shí),設(shè)該三角形面積為S2

(1)若點(diǎn)B在線段AC上,且S1=S2 , 則B點(diǎn)坐標(biāo)為;
(2)若點(diǎn)B在直線l1上,且S2= S1 , 則∠BOA的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,l1和l2分別是走私船和我公安快艇航行路程與時(shí)間的函數(shù)圖象,請(qǐng)結(jié)合圖象解決下列問(wèn)題:

(1)在剛出發(fā)時(shí),我公安快艇距走私船多少海里?

(2)計(jì)算走私船與公安艇的速度分別是多少?

(3)求出l1,l2的解析式.

(4)問(wèn)6分鐘時(shí),走私船與我公安快艇相距多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,AB=4,AD=3,P,Q是對(duì)角線BD上不重合的兩點(diǎn),點(diǎn)P關(guān)于直線AD,AB的對(duì)稱點(diǎn)分別是點(diǎn)E、F,點(diǎn)Q關(guān)于直線BC、CD的對(duì)稱點(diǎn)分別是點(diǎn)G、H.若由點(diǎn)E、F、G、H構(gòu)成的四邊形恰好為菱形,則PQ的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,傘不論張開還是收緊,傘柄AP始終平分同一平面內(nèi)兩條傘架所成的角∠BAC,當(dāng)傘收緊時(shí),結(jié)點(diǎn)D與點(diǎn)M重合,且點(diǎn)A、E、D在同一條直線上,已知部分傘架的長(zhǎng)度如下:?jiǎn)挝唬篶m

傘架

DE

DF

AE

AF

AB

AC

長(zhǎng)度

36

36

36

36

86

86


(1)求AM的長(zhǎng).
(2)當(dāng)∠BAC=104°時(shí),求AD的長(zhǎng)(精確到1cm). 備用數(shù)據(jù):sin52°=0.788,cos52°=0.6157,tan52°=1.2799.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)商品后,都加價(jià)40%作為銷售價(jià),元旦期間搞優(yōu)惠促銷,決定由顧客抽獎(jiǎng)確定折扣,某顧客購(gòu)買甲、乙兩種商品,分別抽到七折和九折,共付款399元,商場(chǎng)共盈利49元,甲、乙兩種商品的進(jìn)價(jià)分別為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】十一期間,小明一家一起去旅游,如圖是小明設(shè)計(jì)的某旅游景點(diǎn)的圖紙(網(wǎng)格是由相同的小正方形組成的,且小正方形的邊長(zhǎng)代表實(shí)際長(zhǎng)度100m,在該圖紙上可看到兩個(gè)標(biāo)志性景點(diǎn)A,B.若建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,則點(diǎn)A(﹣3,1),B(﹣3,﹣3),第三個(gè)景點(diǎn)C(1,3)的位置已破損.

(1)請(qǐng)?jiān)趫D中畫出平面直角坐標(biāo)系,并標(biāo)出景點(diǎn)C的位置;

(2)平面直角坐標(biāo)系的坐標(biāo)原點(diǎn)為點(diǎn)O,ACO是直角三角形嗎?請(qǐng)判斷并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在⊙O中,弦AB、CD相交于點(diǎn)E,連接AC、BC,AC=BC,AB=CD.
(1)如圖1,求證:BE平分∠CBD;
(2)如圖2,F(xiàn)為BC上一點(diǎn),連接AF交CD于點(diǎn)G,當(dāng)∠FAB= ∠ACB時(shí),求證:AC=BD+2CF;
(3)如圖3,在(2)的條件下,若SACF=SCBD , ⊙O的半徑為3 ,求線段GD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知線段ABCD的公共部分BD=AB= CD,線段ABCD的中點(diǎn)E,F之間距離是10cm,AB,CD的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案