【題目】已知:如圖,在△ABC中,∠B=90,∠ACB=30,AB=2,AD=2AC,DC=2BC.
(1)求證:△ACD為直角三角形;(2)求四邊形ABCD的面積.
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)勾股定理求出BC的長(zhǎng)度,再根據(jù)勾股定理逆定理得出△ACD為直角三角形;
(2)根據(jù)四邊形ABCD的面積=△ABC的面積+△ACD的面積,列式進(jìn)行計(jì)算即可得解.
(1)在Rt△ABC中,∵∠ACB=30°,AB=2,∴AC=2AB=4(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半).
在Rt△ABC中,∵∠B=90°,∴BC2+AB2=AC2(勾股定理),∴.
∵AD=2AC,DC=2BC,∴AD=8,,∴AC2+CD2=16+48=64,AD2=64,∴AD2=AC2+CD2,∴△ACD為直角三角形,∠ACD=90°(勾股定理逆定理).
(2)∵S四邊形ABCD=S△ABC+S△ACD,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小聰將三角尺Rt△ABC繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)到△DEC的位置,其中∠A為30°,∠B為直角,若點(diǎn)A、C、E在一條直線上,則此次旋轉(zhuǎn)變換中旋轉(zhuǎn)角的度數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在矩形中,分別是的中點(diǎn),作射線,連接.
(1)請(qǐng)直接寫出線段與的數(shù)量關(guān)系;
(2)將矩形變?yōu)槠叫兴倪呅,其?/span>為銳角,如圖(2),,分別是的中點(diǎn),過點(diǎn)作交射線于點(diǎn),交射線于點(diǎn),連接,求證:;
(3)寫出與的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在紙面上有一數(shù)軸如圖所示.
嘗試:折疊紙面,使表示1的點(diǎn)與表示的點(diǎn)重合,則表示的點(diǎn)與表示_________的點(diǎn)重合.
發(fā)現(xiàn):折疊紙面,使表示的點(diǎn)與表示3的點(diǎn)重合,則表示5的點(diǎn)與表示____________的點(diǎn)重合.
應(yīng)用:若數(shù)軸上、兩點(diǎn)之間的距離為11(在左側(cè)),且經(jīng)過折疊后,表示的點(diǎn)與表示3的點(diǎn)重合,點(diǎn)與點(diǎn)重合,分別求、兩點(diǎn)表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在等邊△ABC的內(nèi)部,且PC=6,PA=8,PB=10,將線段PC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到P'C,連接AP',則sin∠PAP'的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)有場(chǎng)比賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得分, 負(fù)一場(chǎng)得分,積分超過分才能獲得參賽資格.
(1)已知甲隊(duì)在初賽階段的積分為分,求甲隊(duì)初賽階段勝、負(fù)各多少場(chǎng);
(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要?jiǎng)俣嗌賵?chǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南江縣某鄉(xiāng)兩村盛產(chǎn)鳳柑,村有鳳柑200噸,村有鳳柑300噸.現(xiàn)將這些鳳柑運(yùn)到兩個(gè)冷藏倉(cāng)庫(kù),已知倉(cāng)庫(kù)可儲(chǔ)存240噸,倉(cāng)庫(kù)可儲(chǔ)存260噸;從村運(yùn)往兩處的費(fèi)用分別為每噸20元和25元,從村運(yùn)往兩處的費(fèi)用分別為每噸15元和18元.設(shè)從村運(yùn)往倉(cāng)庫(kù)的鳳柑重量為噸.
(1)請(qǐng)?zhí)顚懕砀瘢▎挝唬簢崳?/span>
(2)請(qǐng)分別求出兩村運(yùn)往兩倉(cāng)庫(kù)的鳳柑的運(yùn)輸費(fèi)用(用含的代數(shù)式表示);
(3)當(dāng)時(shí),試求兩村運(yùn)往兩倉(cāng)庫(kù)的鳳柑的運(yùn)輸費(fèi)用.
總計(jì) | |||
200 | |||
300 | |||
總計(jì) | 240 | 260 | 500 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016廣東省茂名市)如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)(k為常數(shù),k≠0)的圖象交于點(diǎn)A(﹣1,4)和點(diǎn)B(a,1).
(1)求反比例函數(shù)的表達(dá)式和a、b的值;
(2)若A、O兩點(diǎn)關(guān)于直線l對(duì)稱,請(qǐng)連接AO,并求出直線l與線段AO的交點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com