【題目】本學(xué)期學(xué)習(xí)了一元一次方程的解法,下面是小明同學(xué)的解題過程:
解方程
解:方程兩邊同時(shí)乘以6,得:…①
去分母,得:2(2﹣3x)﹣3(x﹣5)=1…②
去括號,得:4﹣6x﹣3x+15=1…③
移項(xiàng),得:﹣6x﹣3x=1﹣4﹣15…④
合并同類項(xiàng),得:﹣9x=﹣18…⑤
系數(shù)化1,得:x=2…⑥
上述小明的解題過程從第 步開始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是 .
請幫小明改正錯(cuò)誤,寫出完整的解題過程.
【答案】①;利用等式的性質(zhì)漏乘; 正確過程見解析;答案為·
【解析】
檢查小明同學(xué)的解題過程,找出出錯(cuò)的步驟, 以及錯(cuò)誤的原因, 寫出正確的解題過程即可.
解:第①步開始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是利用等式的性質(zhì)漏乘;
故答案為:①;利用等式的性質(zhì)漏乘;
正確的解題過程為:
解:方程兩邊同時(shí)乘以6,得:×6﹣×6=6,
去分母,得:2(2﹣3x)﹣3(x﹣5)=6,
去括號,得:4﹣6x﹣3x+15=6,
移項(xiàng),得:﹣6x﹣3x=6﹣4﹣15,
合并同類項(xiàng),得:﹣9x=﹣13,
系數(shù)化1,得:x=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩會(huì)期間,記者隨機(jī)抽取參會(huì)的部分代表,對他們某天發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
發(fā)言次數(shù)n | |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
(1)求得樣本容量為 , 并補(bǔ)全直方圖;
(2)如果會(huì)議期間組織1700名代表參會(huì),請估計(jì)在這一天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)表提議的代表中恰有1為女士,E組發(fā)表提議的代表中只有2位男士,現(xiàn)從A組與E組中分別抽一位代表寫報(bào)告,請用列表法或畫樹狀圖的方法,求所抽的兩位代表恰好都是男士的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
閱讀材料:
數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問題.例如,兩個(gè)有理數(shù)在數(shù)軸上對應(yīng)的點(diǎn)之間的距離可以用這兩個(gè)數(shù)的差的絕對值表示;
在數(shù)軸上,有理數(shù)3與1對應(yīng)的兩點(diǎn)之間的距離為|3﹣1|=2;
在數(shù)軸上,有理數(shù)5與﹣2對應(yīng)的兩點(diǎn)之間的距離為|5﹣(﹣2)|=7;
在數(shù)軸上,有理數(shù)﹣2與3對應(yīng)的兩點(diǎn)之間的距離為|﹣2﹣3|=5;
在數(shù)軸上,有理數(shù)﹣8與﹣5對應(yīng)的兩點(diǎn)之間的距離為|﹣8﹣(﹣5)|=3;……
如圖1,在數(shù)軸上有理數(shù)a對應(yīng)的點(diǎn)為點(diǎn)A,有理數(shù)b對應(yīng)的點(diǎn)為點(diǎn)B,A,B兩點(diǎn)之間的距離表示為|a﹣b|或|b﹣a|,記為|AB|=|a﹣b|=|b﹣a|.
解決問題:
(1)數(shù)軸上有理數(shù)﹣10與﹣5對應(yīng)的兩點(diǎn)之間的距離等于 ;數(shù)軸上有理數(shù)x與﹣5對應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為 ;若數(shù)軸上有理數(shù)x與﹣1對應(yīng)的兩點(diǎn)A,B之間的距離|AB|=2,則x等于 ;
聯(lián)系拓廣:
(2)如圖2,點(diǎn)M,N,P是數(shù)軸上的三點(diǎn),點(diǎn)M表示的數(shù)為4,點(diǎn)N表示的數(shù)為﹣2,動(dòng)點(diǎn)P表示的數(shù)為x.
請從A,B兩題中任選一題作答,我選擇 題.
A.①若點(diǎn)P在點(diǎn)M,N兩點(diǎn)之間,則|PM|+|PN|= ;
②若|PM|=2|PN|,即點(diǎn)P到點(diǎn)M的距離等于點(diǎn)P到點(diǎn)N的距離的2倍,則x等于 .
B.①若點(diǎn)P在點(diǎn)M,N之間,則|x+2|+|x﹣4|= ;
若|x+2|+|x﹣4|═10,則x= ;
②根據(jù)閱讀材料及上述各題的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠D=135°,AD=6,CE=2,點(diǎn)P是線段AC上一動(dòng)點(diǎn),點(diǎn)F是線段AB上一動(dòng)點(diǎn),則PE+PF的最小值是( 。
A. 3 B. 6 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).
(1)求線段MN的長度;
(2)根據(jù)第(1)題的計(jì)算過程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長度;
(3)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P以2cm/s的速度沿AB向右運(yùn)動(dòng),終點(diǎn)為B,點(diǎn)Q以1cm/s的速度沿AB向左運(yùn)動(dòng),終點(diǎn)為A,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),求運(yùn)動(dòng)多少秒時(shí),C、P、Q三點(diǎn)有一點(diǎn)恰好是以另兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小芳從家騎自行車去學(xué)校,所需時(shí)間y(min)與騎車速度x(m/min)之間的反比例函數(shù)關(guān)系如圖.
(1)小芳家與學(xué)校之間的距離是多少?
(2)寫出y與x的函數(shù)表達(dá)式;
(3)若小芳7點(diǎn)20分從家出發(fā),預(yù)計(jì)到校時(shí)間不超過7點(diǎn)28分,請你用函數(shù)的性質(zhì)說明小芳的騎車速度至少為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀叮笠擦⒖袒謴?fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
問:(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com