【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t為實(shí)數(shù));⑤點(diǎn)(﹣ ,y1),(﹣ ,y2),(﹣ ,y3)是該拋物線上的點(diǎn),則y1<y2<y3 , 正確的個(gè)數(shù)有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
【答案】B
【解析】解:∵拋物線的對稱軸為直線x=﹣ =﹣2, ∴4a﹣b=0,所以①正確;
∵與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,
∴由拋物線的對稱性知,另一個(gè)交點(diǎn)在(﹣1,0)和(0,0)之間,
∴拋物線與y軸的交點(diǎn)在y軸的負(fù)半軸,即c<0,故②正確;
∵由②知,x=﹣1時(shí)y>0,且b=4a,
即a﹣b+c=a﹣4a+c=﹣3a+c>0,
所以③正確;
由函數(shù)圖象知當(dāng)x=﹣2時(shí),函數(shù)取得最大值,
∴4a﹣2b+c≥at2+bt+c,
即4a﹣2b≥at2+bt(t為實(shí)數(shù)),故④錯誤;
∵拋物線的開口向下,且對稱軸為直線x=﹣2,
∴拋物線上離對稱軸水平距離越小,函數(shù)值越大,
∴y1<y3<y2 , 故⑤錯誤;
故選:B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)和二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。欢魏瘮(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解“數(shù)學(xué)思想作為對學(xué)習(xí)數(shù)學(xué)幫助有多大?”一研究員隨機(jī)抽取了一定數(shù)量的高校大一學(xué)生進(jìn)行了問卷調(diào)查,并將調(diào)查得到的數(shù)據(jù)用下面的扇形圖和下表來表示(圖、表都沒制作完成).
選項(xiàng) | 幫助很大 | 幫助較大 | 幫助不大 | 幾乎沒有幫助 |
人數(shù) | a | 543 | 269 | b |
根據(jù)圖、表提供的信息.
(1)請問:這次共有多少名學(xué)生參與了問卷調(diào)查?
(2)算出表中a、b的值. (注:計(jì)算中涉及到的“人數(shù)”均精確到1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于一組數(shù)據(jù):1,5,6,3,5,下列說法錯誤的是( )
A.平均數(shù)是4
B.眾數(shù)是5
C.中位數(shù)是6
D.方差是3.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC、△CDE均為等邊三角形,連接BD、AE交于點(diǎn)O,BC與AE交于點(diǎn)P.求證:∠AOB=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+c過點(diǎn)(﹣2,2),(4,5),過定點(diǎn)F(0,2)的直線l:y=kx+2與拋物線交于A、B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),過點(diǎn)B作x軸的垂線,垂足為C.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)B在拋物線上運(yùn)動時(shí),判斷線段BF與BC的數(shù)量關(guān)系(>、<、=),并證明你的判斷;
(3)P為y軸上一點(diǎn),以B、C、F、P為頂點(diǎn)的四邊形是菱形,設(shè)點(diǎn)P(0,m),求自然數(shù)m的值;
(4)若k=1,在直線l下方的拋物線上是否存在點(diǎn)Q,使得△QBF的面積最大?若存在,求出點(diǎn)Q的坐標(biāo)及△QBF的最大面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個(gè)單位長度,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,4),B(﹣5,2),C(﹣2,1).
(1)畫出△ABC關(guān)于y軸對稱圖形△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C2;
(3)求(2)中線段OA掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)P在CA的延長線上,∠CAD=45°.
(Ⅰ)若AB=4,求 的長;
(Ⅱ)若 = ,AD=AP,求證:PD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為6的等邊△ABC中,點(diǎn)D、E分別在AC、BC邊上,DE∥AB,EC=2
(1)如圖1,將△DEC沿射線方向平移,得到△D′E′C′,邊D′E′與AC的交點(diǎn)為M,邊C′D′與∠ACC′的角平分線交于點(diǎn)N,當(dāng)CC′多大時(shí),四邊形MCND′為菱形?并說明理由.
(2)如圖2,將△DEC繞點(diǎn)C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′、BE′.邊D′E′的中點(diǎn)為P.
①在旋轉(zhuǎn)過程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說明理由;
②連接AP,當(dāng)AP最大時(shí),求AD′的值.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,在 中,AC=BC,點(diǎn)D是邊AB的中點(diǎn),E,F(xiàn)分別是AC和BC的中點(diǎn),分別以CE,CF為一邊向上作兩個(gè)全等的矩形CEGH和矩形CFMN(其中EG=FM),依次連結(jié)DG、DM、GM。
(1)求證: 是等腰三角形。
(2)如圖2,若將上圖中的兩個(gè)全等的矩形改為兩個(gè)全等的正三角形( 和 ),其他條件不變。請?zhí)骄? 的形狀,并說明理由。
(3)若將上圖中的兩個(gè)全等的矩形改為兩個(gè)正方形,并把 中的邊BC縮短到如圖3形狀,請?zhí)骄? 的形狀,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com