【題目】邊長為6的等邊△ABC中,點D、E分別在AC、BC邊上,DE∥AB,EC=2

(1)如圖1,將△DEC沿射線方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N,當CC′多大時,四邊形MCND′為菱形?并說明理由.
(2)如圖2,將△DEC繞點C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′、BE′.邊D′E′的中點為P.

①在旋轉(zhuǎn)過程中,AD′和BE′有怎樣的數(shù)量關系?并說明理由;
②連接AP,當AP最大時,求AD′的值.(結(jié)果保留根號)

【答案】
(1)

解:當CC'= 時,四邊形MCND'是菱形.

理由:由平移的性質(zhì)得,CD∥C'D',DE∥D'E',

∵△ABC是等邊三角形,

∴∠B=∠ACB=60°,

∴∠ACC'=180°﹣∠ACB=120°,

∵CN是∠ACC'的角平分線,

∴∠D'E'C'= ∠ACC'=60°=∠B,

∴∠D'E'C'=∠NCC',

∴D'E'∥CN,

∴四邊形MCND'是平行四邊形,

∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,

∴△MCE'和△NCC'是等邊三角形,

∴MC=CE',NC=CC',

∵E'C'=2

∵四邊形MCND'是菱形,

∴CN=CM,

∴CC'= E'C'=


(2)

解:①AD'=BE',

理由:當α≠180°時,由旋轉(zhuǎn)的性質(zhì)得,∠ACD'=∠BCE',

由(1)知,AC=BC,CD'=CE',

∴△ACD'≌△BCE',

∴AD'=BE',

當α=180°時,AD'=AC+CD',BE'=BC+CE',

即:AD'=BE',

綜上可知:AD'=BE'.

②如圖連接CP,

在△ACP中,由三角形三邊關系得,AP<AC+CP,

∴當點A,C,P三點共線時,AP最大,

如圖1,在△D'CE'中,由P為D'E的中點,得AP⊥D'E',PD'= ,

∴CP=3,

∴AP=6+3=9,

在Rt△APD'中,由勾股定理得,AD'= =2


【解析】(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質(zhì)得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉(zhuǎn)的性質(zhì),即可判斷出△ACD≌△BCE'即可得出結(jié)論;
②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結(jié)論.
【考點精析】認真審題,首先需要了解等邊三角形的性質(zhì)(等邊三角形的三個角都相等并且每個角都是60°).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點在格點上.

1作出與△ABC關于x軸對稱的圖形△A1B1C1;

2)求出A1,B1C1三點坐標;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣2,與x軸的一個交點在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t為實數(shù));⑤點(﹣ ,y1),(﹣ ,y2),(﹣ ,y3)是該拋物線上的點,則y1<y2<y3 , 正確的個數(shù)有(
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小瑩和小博士下棋,小瑩執(zhí)圓子,小博士執(zhí)方子.如圖,棋盤中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小瑩將第4枚圓子放入棋盤后,所有棋子構(gòu)成一個軸對稱圖形.他放的位置是( )

A.(﹣2,1)
B.(﹣1,1)
C.(1,﹣2)
D.(﹣1,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本校為了解九年級男同學的體育考試準備情況,隨機抽取部分男同學進行了1000米跑步測試.按照成績分為優(yōu)秀、良好、合格與不合格四個等級,學校繪制了如下不完整的統(tǒng)計圖.
(1)根據(jù)給出的信息,補全兩幅統(tǒng)計圖;
(2)該校九年級有600名男生,請估計成績未達到良好有多少名?
(3)某班甲、乙兩位成績優(yōu)秀的同學被選中參加即將舉行的學校運動會1000米比賽.預賽分別為A、B、C三組進行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了維護國家主權(quán)和海洋權(quán)利,海監(jiān)部門對我國領海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.

(1)求∠APB的度數(shù);
(2)已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,E是BC中點,AD是∠BAC的平分線,EF//AD交AC于F.若AB=11,AC=15,則FC的長為( )

A.11
B.12
C.13
D.14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】收發(fā)微信紅包已成為各類人群進行交流聯(lián)系,增強感情的一部分,下面是甜甜和她的雙胞胎妹妹在六一兒童節(jié)期間的對話.
請問:
(1)2015年到2017年甜甜和她妹妹在六一收到紅包的年增長率是多少?
(2)2017年六一甜甜和她妹妹各收到了多少錢的微信紅包?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n(n∈N*)項和為Sn , a3=3,且λSn=anan+1 , 在等比數(shù)列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數(shù)列{an}及{bn}的通項公式;
(Ⅱ)設數(shù)列{cn}的前n(n∈N*)項和為Tn , 且 ,求Tn

查看答案和解析>>

同步練習冊答案