【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y= (m≠0)交于點A(2,﹣3)和點B(n,2).
(1)求直線與雙曲線的表達式;
(2)對于橫、縱坐標(biāo)都是整數(shù)的點給出名稱叫整點.動點P是雙曲線y= (m≠0)上的整點,過點P作垂直于x軸的直線,交直線AB于點Q,當(dāng)點P位于點Q下方時,請直接寫出整點P的坐標(biāo).
【答案】
(1)解:∵雙曲線y= (m≠0)經(jīng)過點A(2,﹣3),
∴m=﹣6.
∴雙曲線的表達式為y=﹣ .
∵點B(n,2)在雙曲線y=﹣ 上,
∴點B的坐標(biāo)為(﹣3,2).
∵直線y=kx+b經(jīng)過點A(2,﹣3)和點B(﹣3,2),
∴
解得 ,
∴直線的表達式為y=﹣x﹣1
(2)解:符合條件的點P的坐標(biāo)是(1,﹣6)或(6,﹣1).
【解析】(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)根據(jù)圖象和函數(shù)解析式得出即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式 12=1= ×1×2×(2+1)
12+22= ×2×3×(4+1)
12+22+32= ×3×4×(6+1)
12+22+32+42= ×4×5×(8+1)…
可以推測12+22+32+…+n2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一扇窗戶,窗框為鋁合金材料,下面是由兩個大小相等的長方形窗框構(gòu)成,上面是由三個大小相等的扇形組成的半圓窗框構(gòu)成,窗戶半圓部分安裝彩色玻璃,兩個長方形部分安裝透明玻璃(本題中π取3,長度單位為米).
(1)一扇這樣窗戶一共需要鋁合金多少米?(用含x,y的代數(shù)式表示)
(2)一扇這樣窗戶一共需要玻璃多少平方米?鋁合金窗框?qū)挾群雎圆挥?/span>(用含x,y的代數(shù)式表示)
(3)某公司需要購進20扇窗戶,在同等質(zhì)量的前提下,甲、乙兩個廠商分別給出如下報價:
鋁合金(米/元) | 彩色玻璃(平方米/元) | 透明玻璃(平方米/元) | |
甲廠商 | 200 | 80 | 不超過100平方米的部分,90元/平方米,超過100平方米的部分,70元/平方米 |
乙廠商 | 220 | 60 | 80元/平方米,每購1平方米透明玻璃送0.1米鋁合金 |
當(dāng)x=2,y=3時,該公司在哪家廠商購買窗戶合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條公路修到湖邊時,需拐彎繞湖而過,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,這時的道路恰好和第一次拐彎之前的道路平行,則∠C的大小是( )
A. 150° B. 130° C. 140° D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點D,E分別在BC,AC邊上,且AE=CD,AD,BE相交于點P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求證:△ABE≌△CAD;
(2) 求BE的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥EF,則∠A、∠C、∠D、∠E滿足的數(shù)量關(guān)系是( )
A. ∠A+∠C+∠D+∠E=360°
B. ∠A+∠D=∠C+∠E
C. ∠A-∠C+∠D+∠E=180°
D. ∠E-∠C+∠D-∠A=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求證:AB∥CD;
(2)求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點G在對角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰?shù)眯凶叩穆肪為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點E在AB上,以AE為直徑的⊙O與BC相切于點D,連接AD.
(1)求證:AD平分∠BAC;
(2)若⊙O的直徑為10,sin∠DAC= ,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com