【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),按向上、向右、向下、向右的方向依次不斷地移動,每次移動一個單位,得到點A10,1)、A21,1)、A31,0)、A42,0),,那么點A2019的坐標(biāo)為(  )

A. 1008,1B. 1009,1C. 1009,0D. 1010,0

【答案】C

【解析】

動點O在平面直角坐標(biāo)系中按向上、向右、向下、向右的方向依次不斷地移動,只要求出前幾個坐標(biāo),然后根據(jù)坐標(biāo)找規(guī)律.

根據(jù)題意和圖的坐標(biāo)可知:每次都移動一個單位長度,中按向上、向右、向下、向右的方向依次不斷地移動A10,1)、A21,1)、A31,0)、

A42,0),A52,1)、A63,1)、A73,0

∴坐標(biāo)變體的規(guī)律:每移動4次,它的縱坐標(biāo)都為1,而橫坐標(biāo)向右移動了2個單位長度,也就是移動次數(shù)的一半;

2019÷4504…3

A2019縱坐標(biāo)是A3的縱坐標(biāo)0;∴A2019橫坐標(biāo)是0+2×504+11009

那么點A2019的坐標(biāo)為(1009,0

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是關(guān)于的方程的兩個不相等的實數(shù)根.

(1)求實數(shù)的取值范圍;

(2)已知等腰的一邊長為7,若恰好是另外兩邊長,求這個三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖已知直線和雙曲線 k0),Am,n在雙曲線 上.當(dāng)m=n=2

1)直接寫出k的值

2)將直線作怎樣的平移能使平移后的直線與雙曲線 只有一個交點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形沿折疊后點重合.若原矩形的長寬之比為,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD 相交于點O,∠AOD=3BOD+20°.

(1)求∠BOD的度數(shù);

(2)O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)解析式;

(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?

(3)當(dāng)增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程:

(1)x2+2x-8=0 (2)x2+12x-15=0

(3)x2-4x=16 (4)x2=x+56

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點BD是對角線,AGDB,交CB的延長線于G,連接GF,若ADBD.下列結(jié)論:①DEBF四邊形BEDF是菱形;③FGAB;④SBFG=.其中正確的是( 。

A. ①②③④ B. ①② C. ①③ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為10的菱形ABCD中,對角線BD16,對角線AC,BD相交于點G,點O是直線BD上的動點,OEABE,OFADF.

(1)求對角線AC的長及菱形ABCD的面積.

(2)如圖①,當(dāng)點O在對角線BD上運(yùn)動時,OEOF的值是否發(fā)生變化?請說明理由.

(3)如圖②,當(dāng)點O在對角線BD的延長線上時,OEOF的值是否發(fā)生變化?若不變,請說明理由;若變化,請?zhí)骄?/span>OE,OF之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案