【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),按向上、向右、向下、向右的方向依次不斷地移動,每次移動一個單位,得到點A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0),…,那么點A2019的坐標(biāo)為( )
A. (1008,1)B. (1009,1)C. (1009,0)D. (1010,0)
【答案】C
【解析】
動點O在平面直角坐標(biāo)系中按向上、向右、向下、向右的方向依次不斷地移動,只要求出前幾個坐標(biāo),然后根據(jù)坐標(biāo)找規(guī)律.
根據(jù)題意和圖的坐標(biāo)可知:每次都移動一個單位長度,中按向上、向右、向下、向右的方向依次不斷地移動A1(0,1)、A2(1,1)、A3(1,0)、
A4(2,0),A5(2,1)、A6(3,1)、A7(3,0)…
∴坐標(biāo)變體的規(guī)律:每移動4次,它的縱坐標(biāo)都為1,而橫坐標(biāo)向右移動了2個單位長度,也就是移動次數(shù)的一半;
∴2019÷4=504…3
∴A2019縱坐標(biāo)是A3的縱坐標(biāo)0;∴A2019橫坐標(biāo)是0+2×504+1=1009
那么點A2019的坐標(biāo)為(1009,0)
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知、是關(guān)于的方程的兩個不相等的實數(shù)根.
(1)求實數(shù)的取值范圍;
(2)已知等腰的一邊長為7,若、恰好是另外兩邊長,求這個三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)如圖,已知直線和雙曲線 (k>0),點A(m,n)在雙曲線 上.當(dāng)m=n=2時.
(1)直接寫出k的值;
(2)將直線作怎樣的平移能使平移后的直線與雙曲線 只有一個交點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD 相交于點O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度數(shù);
(2)以O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)解析式;
(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?
(3)當(dāng)增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解下列方程:
(1)x2+2x-8=0 (2)x2+12x-15=0
(3)x2-4x=16 (4)x2=x+56
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點BD是對角線,AG∥DB,交CB的延長線于G,連接GF,若AD⊥BD.下列結(jié)論:①DE∥BF;②四邊形BEDF是菱形;③FG⊥AB;④S△BFG=.其中正確的是( 。
A. ①②③④ B. ①② C. ①③ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為10的菱形ABCD中,對角線BD=16,對角線AC,BD相交于點G,點O是直線BD上的動點,OE⊥AB于E,OF⊥AD于F.
(1)求對角線AC的長及菱形ABCD的面積.
(2)如圖①,當(dāng)點O在對角線BD上運(yùn)動時,OE+OF的值是否發(fā)生變化?請說明理由.
(3)如圖②,當(dāng)點O在對角線BD的延長線上時,OE+OF的值是否發(fā)生變化?若不變,請說明理由;若變化,請?zhí)骄?/span>OE,OF之間的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com