科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
3 |
x |
3 |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
先閱讀,再利用其結(jié)論解決問題.
閱讀:已知一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1,x2,則有x1+x2=﹣,x1•x2=.這個結(jié)論是法國數(shù)學(xué)家韋達(dá)最先發(fā)現(xiàn)并證明的,故把它稱為“韋達(dá)定理”.利用此定理,可以不解方程就得出x1+x2和 x1•x2的值,進(jìn)而求出相關(guān)的代數(shù)式的值.
解決問題:對于一切不小于2的自然數(shù)n,關(guān)于x的一元二次方程x2﹣(n+2)x﹣2n2=0的兩個根記作an,bn(n≥2),
請求出
+…的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
閱讀以下文字并解決問題:
對于形如x2+2ax+a2這樣的二次三項式,我們可以直接用公式法把它分解成(x+a)2 的形式,但對于二次三項式x2+6x-27,就不能直接用公式法分解了。此時,我們可以在x2+6x-27中間先加上一項9,使它與x2+6x的和構(gòu)成一個完全平方式,然后再減去9,則整個多項式的值不變。 即:x2+6x-27=(x2+6x+9)-9-27=(x+3)2-62=(x+3+6)(x+3-6)=(x+9)(x-3),
像這樣,把一個二次三項式變成含有完全平方式的形式的方法,叫做配方法。
(1)利用“配方法”因式分解:x2+4xy-5y2
(2) 若a+b=6, ab=5,求:①a2+b2, ②a4+b4的值
(3)如果a2+2b2+c2-2ab-6b-4c+13=0,求a+b+c的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com