先閱讀,再利用其結(jié)論解決問題.

閱讀:已知一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1,x2,則有x1+x2=﹣,x1•x2=.這個結(jié)論是法國數(shù)學(xué)家韋達最先發(fā)現(xiàn)并證明的,故把它稱為“韋達定理”.利用此定理,可以不解方程就得出x1+x2和 x1•x2的值,進而求出相關(guān)的代數(shù)式的值.

解決問題:對于一切不小于2的自然數(shù)n,關(guān)于x的一元二次方程x2﹣(n+2)x﹣2n2=0的兩個根記作an,bn(n≥2),

請求出

+…的值.

解∵根與系數(shù)的關(guān)系知,an+bn=n+2,an•bn=﹣2n2,

∴(an﹣2)(bn﹣2)=anbn﹣2(an+bn)+4=﹣2n2﹣2(n+2)+4=﹣2n(n+1),

=﹣(﹣),

+…

=﹣ [(﹣)+(﹣)+…+()]=﹣×(﹣)=﹣

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•武漢模擬)先閱讀并完成第(1)題,再利用其結(jié)論解決第(2)題.
(1)已知一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1,x2,則有x1+x2=-
b
a
,x1•x2=
c
a
.這個結(jié)論是法國數(shù)學(xué)家韋達最先發(fā)現(xiàn)并證明的,故把它稱為“韋達定理”.利用此定理,可以不解方程就得出x1+x2和 x1•x2的值,進而求出相關(guān)的代數(shù)式的值.
請你證明這個定理.
(2)對于一切不小于2的自然數(shù)n,關(guān)于x的一元二次方程x2-(n+2)x-2n2=0的兩個根記作an,bn(n≥2),
請求出
1
(a2-2)(b2-2)
+
1
(a3-2)(b3-2)
+…+
1
(a2011-2)(b2011-2)
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

先閱讀并完成第(1)題,再利用其結(jié)論解決第(2)題.
(1)已知一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1,x2,則有x1+x2=-數(shù)學(xué)公式,x1•x2=數(shù)學(xué)公式.這個結(jié)論是法國數(shù)學(xué)家韋達最先發(fā)現(xiàn)并證明的,故把它稱為“韋達定理”.利用此定理,可以不解方程就得出x1+x2和 x1•x2的值,進而求出相關(guān)的代數(shù)式的值.
請你證明這個定理.
(2)對于一切不小于2的自然數(shù)n,關(guān)于x的一元二次方程x2-(n+2)x-2n2=0的兩個根記作an,bn(n≥2),
請求出數(shù)學(xué)公式數(shù)學(xué)公式+…數(shù)學(xué)公式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年湖北省武漢市十一校聯(lián)考中考數(shù)學(xué)模擬試卷(3月份)(解析版) 題型:解答題

先閱讀并完成第(1)題,再利用其結(jié)論解決第(2)題.
(1)已知一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1,x2,則有x1+x2=-,x1•x2=.這個結(jié)論是法國數(shù)學(xué)家韋達最先發(fā)現(xiàn)并證明的,故把它稱為“韋達定理”.利用此定理,可以不解方程就得出x1+x2和 x1•x2的值,進而求出相關(guān)的代數(shù)式的值.
請你證明這個定理.
(2)對于一切不小于2的自然數(shù)n,關(guān)于x的一元二次方程x2-(n+2)x-2n2=0的兩個根記作an,bn(n≥2),
請求出+…的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年高中提前招生考試數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

先閱讀并完成第(1)題,再利用其結(jié)論解決第(2)題.
(1)已知一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1,x2,則有x1+x2=-,x1•x2=.這個結(jié)論是法國數(shù)學(xué)家韋達最先發(fā)現(xiàn)并證明的,故把它稱為“韋達定理”.利用此定理,可以不解方程就得出x1+x2和 x1•x2的值,進而求出相關(guān)的代數(shù)式的值.
請你證明這個定理.
(2)對于一切不小于2的自然數(shù)n,關(guān)于x的一元二次方程x2-(n+2)x-2n2=0的兩個根記作an,bn(n≥2),
請求出+…的值.

查看答案和解析>>

同步練習(xí)冊答案