【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)若小李11月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?
(2)當(dāng)x≥30,求y與x之間的函數(shù)關(guān)系式;
(3)若小李12月份上網(wǎng)費(fèi)用為135元,則他在該月份的上網(wǎng)時(shí)間是多少?
【答案】(1)60元;(2)y=3x﹣30;(3)55個(gè)小時(shí).
【解析】
(1)根據(jù)圖像可知:每月上網(wǎng)30小時(shí)以內(nèi)收費(fèi)60元;超過30小時(shí)按超出時(shí)間多少收費(fèi);(2)20<60,故付費(fèi)60元;(3)求y=135時(shí),x的值即可.
解:(1)根據(jù)題意,從圖象上看,30小時(shí)以內(nèi)的上網(wǎng)費(fèi)用都是60元;
(2)當(dāng)x≥30時(shí),設(shè)函數(shù)關(guān)系式為y=kx+b,
則,解得,
故函數(shù)關(guān)系式為y=3x﹣30;
(3)由135=3x﹣30解得x=55,
故12月份上網(wǎng)55個(gè)小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小明從家步行去書店看書.出發(fā)小時(shí)后距家1.8千米時(shí),爸爸駕車從家沿相同路線追趕小明,在地追上小明后,二人駕車?yán)^續(xù)前行到達(dá)書店.小明在書店看書,爸爸去單位地辦事.如圖是小明與爸爸兩人之間距離(千米)與小明出發(fā)的時(shí)間(小時(shí))之間的函數(shù)圖象,(小明步行速度與爸爸駕車速度始終保持不變,彼此交流時(shí)間忽略不計(jì)),請(qǐng)根據(jù)圖象回答下列問題:
(1)小明步行速度是_____千米/小時(shí),爸爸駕車速度是______千米/小時(shí):
(2)圖中點(diǎn)的坐標(biāo)是______:
(3)求書店與家的路程;
(4)求爸爸出發(fā)多長(zhǎng)時(shí)間,兩人相距3千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為 度;
(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;
(3)在上述直角三角板從圖1逆時(shí)針旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動(dòng)時(shí)間t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB、a、b.
(1)請(qǐng)用尺規(guī)按下列要求作圖:(不要求寫作法,但要保留作圖痕跡)
①延長(zhǎng)線段AB到C,使BC=a;
②反向延長(zhǎng)線段AB到D,使AD=b.
(2)在(1)的條件下,如果AB=8cm,a=6m,b=10cm,且點(diǎn)E為CD的中點(diǎn),求線段AE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:若∠α的度數(shù)是∠β的度數(shù)的n倍,則∠α叫做∠β的n倍角.
(1)若∠M=10°21′,請(qǐng)直接寫出∠M的3倍角的度數(shù);
(2)如圖1,若∠AOB=∠BOC=∠COD,請(qǐng)直接寫出圖中∠AOB的所有2倍角;
(3)如圖2,若∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,且∠BOD=90°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是線段AB上的任意一點(diǎn)(不與點(diǎn)A和B重合),C是線段AD的中點(diǎn),AB=4cm.
(1)若D是線段AB的中點(diǎn),求線段CD的長(zhǎng)度.
(2)在圖中作線段DB的中點(diǎn)E,當(dāng)點(diǎn)D在線段AB上從左向右移動(dòng)時(shí),試探究線段CE長(zhǎng)度的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形紙片ABCD,點(diǎn)E在邊AB上,M、N分別在射線BC和射線AD上,連接EM,EN,將三角形MBE沿EM折疊(把物體的一部分翻轉(zhuǎn)和另一部分貼攏),點(diǎn)B落在點(diǎn)B’處;將三角形NAE沿EN折疊,點(diǎn)A落在點(diǎn)A’處.
(1)若,,用直尺、量角器畫出射線EB’與EA’;
(2)若,,求的度數(shù);
(3)若,,用含的代數(shù)式表示的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:小錘遇到一個(gè)問題:如圖①,在△ABC中,DE//BC分別交AB于點(diǎn)D,交AC于點(diǎn)E,已知CDBE,CD=2,BE=3,求BC+DE的值.
小錘發(fā)現(xiàn),過點(diǎn)E作EFDC,交BC的延長(zhǎng)線于點(diǎn)F,構(gòu)造△BEF,經(jīng)過推理和計(jì)算能夠使問題得到解決.
(1)請(qǐng)按照上述思路完成小錘遇到的問題;
(2)參考小錘思考問題的方法,解決下面的問題:如圖②,四邊形ABCD是平行四邊形,四邊形ABEF是矩形,AC與DF交于點(diǎn)G,AC=BF=DF,求∠DGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,E為BC的中點(diǎn),過點(diǎn)E作EF⊥AB于點(diǎn)F,延長(zhǎng)DC,交FE的延長(zhǎng)線于點(diǎn)G,連結(jié)DF,已知∠FDG=45°
(1)求證:GD=GF.
(2)已知BC=10, .求 CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com