【題目】閱讀下面的材料:小錘遇到一個(gè)問(wèn)題:如圖①,在△ABC中,DE//BC分別交AB于點(diǎn)D,交AC于點(diǎn)E,已知CDBE,CD=2,BE=3,求BC+DE的值.

小錘發(fā)現(xiàn),過(guò)點(diǎn)E作EFDC,交BC的延長(zhǎng)線于點(diǎn)F,構(gòu)造△BEF,經(jīng)過(guò)推理和計(jì)算能夠使問(wèn)題得到解決.

(1)請(qǐng)按照上述思路完成小錘遇到的問(wèn)題;

(2)參考小錘思考問(wèn)題的方法,解決下面的問(wèn)題:如圖②,四邊形ABCD是平行四邊形,四邊形ABEF是矩形,AC與DF交于點(diǎn)G,AC=BF=DF,求∠DGC的度數(shù).

【答案】1BC+DE=;(260°

【解析】

1)由DEBCEFDC,可證得四邊形DCFE是平行四邊形,即可得EF=CD=3,CF=DE,即可得BC+DE=BF,然后利用勾股定理,求得BC+DE的值;

2)首先連接AE,CE,由四邊形ABCD是平行四邊形,四邊形ABEF是矩形,易證得四邊形DCEF是平行四邊形,繼而證得△ACE是等邊三角形,則可求得答案.

1DEBC,EFDC,

四邊形DCFE是平行四邊形,

EF=CD=3,CF=DE,

CDBE

EFBE,

BC+DE=BC+CF=BF=BE2+EF2=

(2)連接AE,CE,如圖.

四邊形ABCD是平行四邊形,

ABDC

四邊形ABEF是矩形,

ABFE,BF=AE

DCFE

四邊形DCEF是平行四邊形.

CEDF

AC=BF=DF

AC=AE=CE

∴△ACE是等邊三角形.

∴∠ACE=60°

CEDF,

∴∠AGF=ACE=60°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,C為線段 AB上一點(diǎn),以 AC,BC為一邊,在 AB同側(cè)做長(zhǎng)方形 ACDE和長(zhǎng)方形 CBFG,且 滿足 AC=2AE,CB=2BF,記 AC2aBC2b(a b) .

1)記長(zhǎng)方形 ACDE的面積為 s1 ,長(zhǎng)方形 CBFG的面積為 s2 . AB6, a2b ,求 s1 s2 .

2)如圖 2,點(diǎn) P是線段 CA上的動(dòng)點(diǎn).

①當(dāng)點(diǎn) P從點(diǎn) C向左移動(dòng)個(gè)單位后,求EAPFBP的面積之差.

②當(dāng)點(diǎn) P從點(diǎn) C向左移動(dòng) 個(gè)單位后,EAPFBP的面積之差記為 m1 ; 當(dāng)點(diǎn) P從點(diǎn) C向左移動(dòng) (a b) 個(gè)單位后,EAPFBP的面積之差記為 m2 ,求 的值(結(jié)果用含 n 的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BAx軸,AC是射線.

1)若小李11月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?

2)當(dāng)x≥30,求yx之間的函數(shù)關(guān)系式;

3)若小李12月份上網(wǎng)費(fèi)用為135元,則他在該月份的上網(wǎng)時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從地面B處測(cè)得熱氣球A的仰角為45°,從地面C處測(cè)得熱氣球A的仰角為30°,若BC240米,求:熱氣球A的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E是AD的中點(diǎn),將△ABE沿直線BE折疊后得到△GBE,延長(zhǎng)BG交CD于點(diǎn)F,若AB=6,BC=4,則FD=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩張寬度均為4的矩形紙片按如圖所示方式放置:

1)如圖1,求證:四邊形ABCD是菱形;

2)如圖2,點(diǎn)PBC上,PFAD于點(diǎn)F,若=16, PC=1.

①求∠BAD的度數(shù);②求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E、F是正方形ABCD的邊AD上的兩個(gè)動(dòng)點(diǎn),滿足AE=DF.連接CFBDG,連接BEAGH.已知正方形ABCD的邊長(zhǎng)為4cm,解決下列問(wèn)題:

1)求證:BEAG;

2)求線段DH的長(zhǎng)度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yx 2mx(m為常數(shù)),當(dāng)-1≤x≤2時(shí),函數(shù)y的最小值為-2,則m的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的直徑為AB,點(diǎn)C在圓周上(異于A,B),ADCD.

(1)若BC=3,AB=5,求AC的值;

(2)若AC是DAB的平分線,求證:直線CD是O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案