【題目】如圖,在矩形ABCD中,AD=6,AB=4,點E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點P是直線EF、GH之間任意一點,連接PE、PF、PG、PH,則△PEF和△PGH的面積和等于 .
【答案】7
【解析】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,
∴AE=AB﹣BE=4﹣1=3,
CH=CD﹣DH=4﹣1=3,
∴AE=CH,
在△AEF與△CGH中, ,
∴△AEF≌△CGH(SAS),
∴EF=GH,
同理可得,△BGE≌△DFH,
∴EG=FH,
∴四邊形EGHF是平行四邊形,
∵△PEF和△PGH的高的和等于點H到直線EF的距離,
∴△PEF和△PGH的面積和= ×平行四邊形EGHF的面積,
平行四邊形EGHF的面積
=4×6﹣ ×2×3﹣ ×1×(6﹣2)﹣ ×2×3﹣ ×1×(6﹣2),
=24﹣3﹣2﹣3﹣2,
=14,
∴△PEF和△PGH的面積和= ×14=7.
故答案為:7.
連接EG,F(xiàn)H,根據(jù)題目數(shù)據(jù)可以證明△AEF與△CGH全等,根據(jù)全等三角形對應(yīng)邊相等可得EF=GH,同理可得EG=FH,然后根據(jù)兩組對邊相等的四邊形是平行四邊形可得四邊形EGHF是平行四邊形,所以△PEF和△PGH的面積和等于平行四邊形EGHF的面積的一半,再利用平行四邊形EGHF的面積等于矩形ABCD的面積減去四周四個小直角三角形的面積即可求解.
科目:初中數(shù)學 來源: 題型:
【題目】將一條長為40cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.
(1)要使這兩個正方形的面積之和等于52cm2 , 那么這段鐵絲剪成兩段后的長度分別是多少?
(2)兩個正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為了了解員工每人所創(chuàng)年利潤情況,公司從各部抽取部分員工對每年所創(chuàng)年利潤情況進行統(tǒng)計,并繪制如圖1,圖2統(tǒng)計圖.
(1)將圖補充完整;
(2)本次共抽取員工人,每人所創(chuàng)年利潤的眾數(shù)是 , 平均數(shù)是;
(3)若每人創(chuàng)造年利潤10萬元及(含10萬元)以上位優(yōu)秀員工,在公司1200員工中有多少可以評為優(yōu)秀員工?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是36千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達.求小明走路線一時的平均速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發(fā),沿同一路線勻速行駛,相向而行,快車到達乙地停留一段時間后,按原路原速返回甲地.慢車到達甲地比快車到達甲地早 小時,慢車速度是快車速度的一半,快、慢兩車到達甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時間x(小時)的函數(shù)圖象如圖所示,請結(jié)合圖象信息解答下列問題:
(1)請直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(千米)與x(小時)的函數(shù)關(guān)系式;
(3)兩車出發(fā)后經(jīng)過多長時間相距90千米的路程?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿A→B→C的方向運動,到達點C時停止,設(shè)運動時間為x(秒),y=PC2 , 則y關(guān)于x的函數(shù)的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個口袋中放有290個涂有紅、黑、白三種顏色的質(zhì)地相同的小球.若紅球個數(shù)是黑球個數(shù)的2倍多40個.從袋中任取一個球是白球的概率是 .
(1)求袋中紅球的個數(shù);
(2)求從袋中任取一個球是黑球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com