【題目】某區(qū)域?yàn)轫憫?yīng)“綠水青山就是金山銀山”的號(hào)召,加強(qiáng)了綠化建設(shè).為了解該區(qū)域群眾對(duì)綠化建設(shè)的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在該區(qū)域的甲、乙兩個(gè)片區(qū)進(jìn)行了調(diào)查,得到如下不完整統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中信息,解決下列問題:

(1)此次調(diào)查中接受調(diào)查的人數(shù)為多少人,其中“非常滿意”的人數(shù)為多少人;

(2)興趣小組準(zhǔn)備從“不滿意”的4位群眾中隨機(jī)選擇2位進(jìn)行回訪,已知這4位群眾中有2位來自甲片區(qū),另2位來自乙片區(qū),請(qǐng)用畫樹狀圖或列表的方法求出選擇的群眾來自甲片區(qū)的概率.

【答案】(1)50,18;(2)選擇的市民均來自甲區(qū)的概率為

【解析】

1)用滿意的人數(shù)除以其所占百分比即可得到調(diào)查中接受調(diào)查的人數(shù),用調(diào)查的總?cè)藬?shù)乘以非常滿意所占的百分比即可得到“非常滿意”的人數(shù);

2)畫樹狀圖可得共有12種等可能的結(jié)果,選擇的市民均來自甲區(qū)的有2種情況,即可得到結(jié)果.

1)解:(1)∵滿意的有20人,占40%,

∴此次調(diào)查中接受調(diào)查的人數(shù)為:20÷40%=50(人);

此次調(diào)查中結(jié)果為非常滿意的人數(shù)為:50×36%=18(人);

2)畫樹狀圖得:

共有12種等可能的結(jié)果,選擇的市民均來自甲區(qū)的有2種情況,

選擇的市民均來自甲區(qū)的概率為:=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB是半圓O的直徑,CD是半圓O上的兩個(gè)點(diǎn),D是弧BC的中點(diǎn)ODBC交于點(diǎn)E,連接AC

(1)A=70°,CBD的度數(shù);

(2)DE=2,BC=6,求半圓O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小米手機(jī)越來越受到大眾的喜愛,各種款式相繼投放市場,某店經(jīng)營的A款手機(jī)去年銷售總額為50000元,今年每部銷售價(jià)比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.

1)今年A款手機(jī)每部售價(jià)多少元?

2)該店計(jì)劃新進(jìn)一批A款手機(jī)和B款手機(jī)共60部,且B款手機(jī)的進(jìn)貨數(shù)量不超過A款手機(jī)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批手機(jī)獲利最多?A,B兩款手機(jī)的進(jìn)貨和銷售價(jià)格如下表:

A款手機(jī)

B款手機(jī)

進(jìn)貨價(jià)格(元)

1100

1400

銷售價(jià)格(元)

今年的銷售價(jià)格

2000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組.把不等式組的解集在數(shù)軸上表示出來,并寫出不等式組的非負(fù)整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+ca>0)經(jīng)過點(diǎn)A(-3,0)、B(,0),它與y軸相交于點(diǎn)C,且∠ACB≥90°,設(shè)該拋物線的頂點(diǎn)為D,△BCD的邊CD上的高為h

(1)求實(shí)數(shù)a的取值范圍;

(2)求高h的取值范圍;

(3)當(dāng)(1)的實(shí)數(shù)a取得最大值時(shí),求此時(shí)△BCD外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長線與AC的延長線的交點(diǎn).

(1)求證:DE=EF;

(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;

(3)若AB=3,AE=,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與x軸交于不同的兩點(diǎn)A(x1,0),B(x2,0).

(1)k的取值范圍;

(2)AB=2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,已知AB=2,BC,點(diǎn)E在邊CD上移動(dòng),連接AE,將多邊形ABCE沿直線AE翻折,得到多邊形ABCE,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)B′、C′.

(1)當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),求DF的長;

(2)若BC分別交邊AD,CD于點(diǎn)FG,且∠DAE=22.5°,求DFG的面積;

(3)如果點(diǎn)MCD的中點(diǎn),那么在點(diǎn)E從點(diǎn)C移動(dòng)到點(diǎn)D的過程中,求CM的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)yax2+bx+c的圖象,在下列說法中:①ac0;②方程ax2+bx+c0的根是x1=﹣1x23;③a+b+c0;④當(dāng)x1時(shí),yx的增大而減小;⑤2ab0;⑥b24ac0.下列結(jié)論一定成立的是(

A. ①②④⑥ B. ①②③⑥ C. ②③④⑤⑥ D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案