【題目】在△ABC中,AB=AC,點(diǎn)D在直線BC上(不與點(diǎn)B、C重合),線段AD繞A點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)∠BAC的大小,得線段AE,連接DE、CE.探索∠BCE與∠BAC的大小關(guān)系,并加以證明.
【答案】見(jiàn)解析.
【解析】
分類討論:
當(dāng)點(diǎn)D在線段BC上,如圖1,根據(jù)旋轉(zhuǎn)的性質(zhì)得AD=AE,再由∠DAE=∠BAC得到∠BAD=∠CAE,則可根據(jù)SAS判定△ABD≌△ACE,得到∠ABC=∠ACE,而∠BCE=∠BCA+∠ACE=∠BCA+∠ABC,而∠BAC+∠BCA+∠ABC=180°,于是得到∠BCE+∠BAC=180°;
當(dāng)點(diǎn)D再BC的延長(zhǎng)線上,如圖2,同樣可證明△ABD≌△ACE,得到∠ABD=∠ACE,同樣可得∠BCE+∠BAC=180°;
當(dāng)點(diǎn)D再CB延長(zhǎng)線上時(shí),如圖3,同樣可證明△ABD≌△ACE,得到∠ABD=∠ACE,根據(jù)三角形外角性質(zhì)得∠ABD=∠BAC+∠ACB,∠ACE=∠ACB+∠BCE,所以∠BCE=∠BAC;
綜上所述,∠BCE與∠BAC相等或互補(bǔ).
∠BCE與∠BAC相等或互補(bǔ).
理由如下:
當(dāng)點(diǎn)D在線段BC上,如圖1,
∵線段AD繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)得到AE
∴AD=AE
∵∠DAE=∠BAC
∴∠BAD=∠CAE
在△ABD和△ACE中
∴△ABD≌△ACE(SAS)
∴∠ABC=ACE
∴∠BCE=∠BCA+∠ACE=∠BCA+∠ABC
∵∠BAC+∠BCA+∠ABC=180°
∴∠BCE+∠BAC=180°
當(dāng)點(diǎn)D再BC的延長(zhǎng)線上,如圖2,
同樣可證明△ABD≌△ACE,得到∠ABD=ACE
同樣得到∠BCE+∠BAC=180°
當(dāng)點(diǎn)D再CB延長(zhǎng)線上時(shí),如圖3,
同樣可證明△ABD≌△ACE,得到∠ABD=ACE
∵∠ABD=∠BAC+∠ACB
∠ACE=∠ACB+∠BCE
∴∠BCE=∠BAC
綜上所述,∠BCE與∠BAC相等或互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知AB∥CD,點(diǎn)E、F分別是AB、CD上的點(diǎn),點(diǎn)P是兩平行線之間的一點(diǎn),設(shè)∠AEP=α,∠PFC=β,在圖①中,過(guò)點(diǎn)E作射線EH交CD于點(diǎn)N,作射線FI,延長(zhǎng)PF到G,使得PE、FG分別平分∠AEH、∠DFl,得到圖②.
(1)在圖①中,過(guò)點(diǎn)P作PM∥AB,當(dāng)α=20°,β=50°時(shí),∠EPM= 度,∠EPF= 度;
(2)在(1)的條件下,求圖②中∠END與∠CFI的度數(shù);
(3)在圖②中,當(dāng)FI∥EH時(shí),請(qǐng)直接寫(xiě)出α與β的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0 (a≠0)有兩個(gè)不相等的實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,那么稱這樣的方程為“倍根方程”.例如,方程x2-6x+8=0的兩個(gè)根是2和4,則方程x2-6x+8=0就是“倍根方程”.
(1)若一元二次方程x2-3x+c=0是“倍根方程”,則c= ;
(2)若(x-2) (mx-n)=0(m≠0)是“倍根方程”,求代數(shù)式4m2-5mn+n2的值;
(3)若方程ax2+bx+c=0 (a≠0)是倍根方程,且相異兩點(diǎn)M(1+t,s),N(4-t,s),都在拋物線y=ax2+bx+c上,求一元二次方程ax2+bx+c=0 (a≠0)的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,經(jīng)過(guò)點(diǎn)A(1,);點(diǎn)F(0,1)在y軸上.直線y=﹣1與y軸交于點(diǎn)H.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P是(1)中圖象上的點(diǎn),過(guò)點(diǎn)P作x軸的垂線與直線y=﹣1交于點(diǎn)M.
求證:PFM為等腰三角形;
(3)作PQFM于點(diǎn)Q,當(dāng)點(diǎn)P從橫坐標(biāo)2013處運(yùn)動(dòng)到橫坐標(biāo)2017處時(shí),請(qǐng)求出點(diǎn)Q運(yùn)動(dòng)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是正方形ABCD內(nèi)一點(diǎn),∠APB=135 , BP=1,AP=,求PC的值( 。
A. B. 3 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,四邊形ABCD中,AB=7,BC=3,∠ABC=∠ACD=∠ADC=45°,求BD的長(zhǎng);
(2)如圖2,在(2)的條件下,當(dāng)△ACD在線段AC的左側(cè)時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)六七年級(jí)有350名同學(xué)去春游,已知2輛A型車和1輛B型車可以載學(xué)生100人;1輛A型車和2輛B型車可以載學(xué)生110人.
(1)A、B型車每輛可分別載學(xué)生多少人?
(2)若租一輛A需要100元,一輛B需120元,請(qǐng)你設(shè)計(jì)租車方案,使得恰好運(yùn)送完學(xué)生并且租車費(fèi)用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點(diǎn)D,那么∠DAC的度數(shù)為( 。
A. 90° B. 80° C. 70° D. 60°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com