【題目】如圖1,在四邊形ABCD中,點E、F分別是AB、CD的中點,過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求證:AD=BC;
(2)求證:△AGD∽△EGF;
(3)如圖2 , 若AD、BC所在直線互相垂直,求的值.
【答案】
(1)
證明:∵GE是AB的垂直平分線,
∴GA=GB,
同理:GD=GC,
在△AGD和△BGC中,
GA=GB,
∠AGD=∠BGC,
GD=GC,
∴△AGD≌△BGC(SAS),
∴AD=BC;
(2)
證明:∵∠AGD=∠BGC,
∴∠AGB=∠DGC,
在△AGB和△DGC中,,
∴△AGB∽△DGC,
∴,
又∵∠AGE=∠DGF,
∴∠AGD=∠EGF,
∴△AGD∽△EGF;
(3)
解:延長AD交GB于點M,交BC的延長線于點H,如圖所示:
則AH⊥BH,
∵△AGD≌△BGC,
∴∠GAD=∠GBC,
在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,
∴∠AGB=∠AHB=90°,
∴∠AGE=∠AGB=45°,
∴,
又∵△AGD∽△EGF,
∴.
【解析】(1)由線段垂直平分線的性質得出GA=GB,GD=GC,由SAS證明△AGD≌△BGC,得出對應邊相等即可;
(2)先證出∠AGB=∠DGC,由,證出△AGB∽△DGC,得出比例式,再證出∠AGD=∠EGF,即可得出△AGD∽△EGF;
(3)延長AD交GB于點M,交BC的延長線于點H,則AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.
此題考查了相似三角形的應用和垂直平分線性質,三角形相似,對應角相等,對應邊成比例。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,P是第一象限角平分線上的一點,且P點的橫坐標為3.把一塊三角板的直角頂點固定在點P處,將此三角板繞點P旋轉,在旋轉的過程中設一直角邊與x軸交于點E,另一直角邊與y軸交于點F,若△POE為等腰三角形,則點F的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與雙曲線交于兩點,且點的橫坐標為.
(1)求的值;
(2)若雙曲線上一點的縱坐標為8,求的面積;
(3)過原點的另一條直線交雙曲線于兩點(點在第一象限),若由點為頂點組成的四邊形面積為,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開后拼成一個大正方形。
(1)拼成的大正方形的面積與邊長分別是多少?
(2)你能在下圖3×3方格中,連接四個格點,組成面積為5的正方形嗎?
(3)你還能把十個小正方形組成的圖形紙,剪開并拼成更大的正方形嗎?若能,請在下圖中畫出圖形,并求出它的邊長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,拋物線y= x2+2x與x軸相交于O、B,頂點為A,連接OA.
(1)求點A的坐標和∠AOB的度數(shù);
(2)若將拋物線y= x2+2x向右平移4個單位,再向下平移2個單位,得到拋物線m,其頂點為點C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點C′是否在拋物線y= x2+2x上,請說明理由.
(4)若點P為x軸上的一個動點,試探究在拋物線m上是否存在點Q,使以點O、P、C、Q為頂點的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請直接寫出點Q的坐標;若不存在,請說明理由. (參考公式:二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點坐標為( , ),對稱軸是直線x= .)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點P在BC上,點Q在⊙O上,且OP⊥PQ.
(1)如圖1,當PQ∥AB時,求PQ的長度;
(2)如圖2,當點P在BC上移動時,求PQ長的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(a2-4a+2)(a2-4a+6)+4進行因式分解的過程:
解:設a2-4a=y(tǒng),則
原式=(y+2)(y+6)+4(第一步)
=y(tǒng)2+8y+16(第二步)
=(y+4)2(第三步)
=(a2-4a+4)2.(第四步)
(1)該同學因式分解的結果是否徹底:________(填“徹底”或“不徹底”);
(2)若不徹底,請你直接寫出因式分解的最后結果:________;
(3)請你模仿以上方法對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是
( 。
A.
B.
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,對角線AC與BC相交于O , E為AB的中點,F為DE的中點,G為CF的中點, OH⊥DE于H , 過A作AI⊥DE于I , 交BD于J , 交BC于K , 連接BI .
下列結論:①G到AC的距離等于 ;②OH= ;③BK= AK;④∠BIJ=45°.其中正確的結論是
A.①②③
B.①②④
C.①③④
D.①②③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com