【題目】如圖1,內(nèi)接于,點(diǎn)為中點(diǎn),點(diǎn)在上,連接點(diǎn)是的中點(diǎn),連結(jié).
(1)求證:;
(2)如圖2,若平分與交于點(diǎn)延長,與的延長線交于點(diǎn)求證:;
(3)在(2)的條件下,若,求的面積.
【答案】(1)見解析;(2)見解析;(3)面積為.
【解析】
(1)先根據(jù)圓周角定理的推論得出點(diǎn)O與M重合,然后利用等腰三角形的性質(zhì)得出,即;
(2)首先證明,即可得出;
(3)首先利用三角形的中位線的性質(zhì)得出,然后根據(jù)角平分線的定義得出進(jìn)而有,然后證明,則有,然后通過證明得出,則,然后設(shè), 在中,利用勾股定理求出x的值,從而可求出AB的長度,則圓的半徑可求,最后利用圓的面積公式即可求解.
證明:如圖1中,連接,
,點(diǎn)為中點(diǎn),
是的直徑,點(diǎn)與重合.
∵點(diǎn)是的中點(diǎn),
.
,
,
即;
證明:如圖2,
∵AB是直徑,
,
.
在和中,
,
;
解:過點(diǎn)作于,
是的直徑,
,
.
∵,
,
,
∴.
又∵AD平分,
,
,
.
,
,
,
.
在和中,
,
,
,
.
設(shè),則,
.
在中,
,
,
,
解得或(舍去),
,
,
面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是( 。
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的垂直平分線上.
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們把關(guān)于某一點(diǎn)成中心對稱的兩條拋物線叫“孿生拋物線”;(1)已知拋物線L:y=﹣x2+4與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于C點(diǎn),求L關(guān)于坐標(biāo)原點(diǎn)O(0,0)的“孿生拋物線”W;(2)點(diǎn)N為坐標(biāo)平面內(nèi)一點(diǎn),且△BCN是以BC為斜邊的等腰直角三角形,在x軸是否存在一點(diǎn)M(m,0),使拋物線L關(guān)于點(diǎn)M的“孿生拋物線”過點(diǎn)N,如果存在,求出M點(diǎn)坐標(biāo);不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標(biāo)一工程隊(duì)負(fù)責(zé)在山腳下修建一座水庫的土方施工任務(wù).該工程隊(duì)有兩種型號的挖掘機(jī),已知3臺型和5臺型挖掘機(jī)同時(shí)施工一小時(shí)挖土165立方米;4臺型和7臺型挖掘機(jī)同時(shí)施工一小時(shí)挖土225立方米.每臺型挖掘機(jī)一小時(shí)的施工費(fèi)用為300元,每臺型挖掘機(jī)一小時(shí)的施工費(fèi)用為180元.
(1)分別求每臺型, 型挖掘機(jī)一小時(shí)挖土多少立方米?
(2)若不同數(shù)量的型和型挖掘機(jī)共12臺同時(shí)施工4小時(shí),至少完成1080立方米的挖土量,且總費(fèi)用不超過12960元.問施工時(shí)有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與⊙相離.于點(diǎn),交⊙于點(diǎn),,與⊙相切于點(diǎn),的延長線交直線于點(diǎn).
(1)求證:;
(2)若,求⊙的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是直角三角形,.
(1)請用尺規(guī)作圖法,作,使它與相切于點(diǎn),與相交于點(diǎn);保留作圖痕跡,不寫作法,請標(biāo)明字母)
(2)在(1)的圖中,若,,求弧的長.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的對稱軸為直線.若關(guān)于的一元二次方程在的范圍內(nèi)有實(shí)數(shù)根,則的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com