【題目】為了測量重慶有名的觀景點南山大金鷹的大致高度,小南同學(xué)使用的無人機進行觀察,當(dāng)無人機與大金鷹側(cè)面在同一平面,且距離水平面垂直高度GF100米時,小南調(diào)整攝像頭方向,當(dāng)俯角為45°時,恰好可以拍攝到金鷹的頭頂A點;當(dāng)俯角為63°時,恰好可以拍攝到金鷹底座點E.已知大金鷹是雄踞在一人造石臺上,石臺側(cè)面CE12.5米,坡度為10.75,石臺上方BC10米,頭部A點位于BC中點正上方.則金鷹自身高度約( 。┟祝ńY(jié)果保留一位小數(shù),sin63°≈0.89cos63°≈0.45,tan63°≈1.96

A.B.C.D.

【答案】A

【解析】

AMDFMAHGFH,則AM=HFAH=MF,在RtEFG中,由三角函數(shù)求出EF=≈51.02,由石臺側(cè)面CE坡度為10.75,求出石臺側(cè)面CE寬度為12.5×=7.5,高度為10,求出ME=BC=12.5,得出AH=MF=63.52,證出AGH是等腰直角三角形,得出GH=AH=63.52,求出AM=HF=100-63.52≈36.5(米),即可得出答案.

解:作AMDFMAHGFH,如圖所示:

AM=HFAH=MF,

RtEFG中,∠GEF=63°,

tanGEF=,∴EF==51.02,

∵石臺側(cè)面CE12.5米,坡度為10.75

∴石臺側(cè)面CE寬度為12.5×=7.5,高度為12.5×=10,

∵石臺上方BC10米,頭部A點位于BC中點正上方,

ME=BC+7.5=5+7.5=12.5,

AH=MF=12.5+51.02=63.52,

RtAGH中,∠AGH=90°-45°=45°,

∴△AGH是等腰直角三角形,

GH=AH=63.52,

AM=HF=100-63.52≈36.5(米),

∴金鷹自身高度約為36.5-10=26.5(米);

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊材料的形狀是銳角三角形ABC,BC=120mm,4D=80mm, .把它加工成正方形零件如圖1,使正方形的一邊在BC,其余兩個頂點分別在AB,AC.

(1)求證:;

(2)求這個正方形零件的邊長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一座拋物線形拱橋,正常水位時橋下水面寬為20m,拱頂距水面4m.

(1)在如圖的直角坐標(biāo)系中,求出該拋物線的解析式;

(2)為保證過往船只順利航行,橋下水面寬度不得小于18m,求水面在正常水位基礎(chǔ)上,最多漲多少米,不會影響過往船只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點B兩點,與y軸交于點,拋物線的頂點在直線上.

1)求拋物線的解析式;

2)點P為第一象限內(nèi)拋物線上的一個動點,過點P軸交BC于點Q,求線段PQ長度的最大值,及此時點P的坐標(biāo);

3)點Mx軸上,點N在拋物線的對稱軸上,若以點MN,C,B為頂點的四邊形是平行四邊形,請直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近一周,各個學(xué)校均在緊張有序的進行中考模擬考試,學(xué)生們通過模擬考試來調(diào)整自己的狀態(tài)并了解自己的學(xué)業(yè)水平.某中學(xué)物理教研組想通過此次中考模擬的成績來預(yù)估中考的各個分?jǐn)?shù)段人數(shù),在全年級隨機抽取了男、女各40名學(xué)生的成績,并將數(shù)據(jù)進行整理分析,給出了下面部分信息:

①男生成績扇形統(tǒng)計圖和女生成績頻數(shù)分布直方圖如下:(數(shù)據(jù)分組為A組:x50B組:50≤x60,C組:60≤x70,D組:70≤x≤80

②男生C組中全部15名學(xué)生的成績?yōu)椋?/span>63,6964,62,68,69,6569,6566,67,6167,66,69

③兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、滿分率、極差(單位:分)如表所示:

平均數(shù)

中位數(shù)

眾數(shù)

滿分率

極差

男生

70

b

c

25%

32

女生

70

68

78

15%

d

1)扇形統(tǒng)計圖A組學(xué)生對應(yīng)的圓心角α的度數(shù)為______

2)若成績在70分(包含70分)以上為優(yōu)秀,請你估計該校1200名學(xué)生此次考試中優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線的圖象交x軸于A2,0)和點B,交y軸負(fù)半軸于點C,且OB=OC,下列結(jié)論:

2bc=2;a=;ac=b1;0

其中正確的個數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形EFGH的四個頂點分別在正方形ABCD的四條邊上,若正方形EFGH與正方形ABCD的相似比為,則)的值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3x軸于A,B兩點,交y軸于點C,點D為拋物線的頂點,點C關(guān)于拋物線的對稱軸的對稱點為E,點G,F分別在xy軸上,則四邊形EDFG周長的最小值為_____

查看答案和解析>>

同步練習(xí)冊答案