【題目】如圖,足球場上守門員在O處開出一高球,球從離地面1mA處飛出(Ay軸上),運動員乙在距O6mB處發(fā)現(xiàn)球在自己頭的正上方達到最高點M,距地面約4m高.球第一次落地后又彈起.據(jù)試驗,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.

(1)求足球開始飛出到第一次落地時,該拋物線的表達式;

(2)運動員乙要搶到第二個落點D,他應再向前跑多少米?( )

【答案】(1) ;(2)17米.

【解析】試題分析:(1)依題意代入x的值可得拋物線的表達式.

2先求出OC的長,根據(jù)圖示可得第二次足球彈出后的距離為CD,相當于將拋物線AEMFC向下平移了2個單位可得2=-x-62解得x的值即可知道CD、BD

試題解析:(1)如圖,設足球開始飛出到第一次落地時,

拋物線的表達式為y=a(x-h)2+k,

∵h=6,k=4,

∴y=a(x-6)2+4,

由已知:當x=0y=1,

1=36a+4,

a=-,

∴表達式為y=-x-62+4=-x2+x+1;

2)令y=0,-x-62+4=0,

∴(x-6)2=48,

解得:x1=+6≈13,x2=-+60(舍去),

∴OC13,

如圖,第二次足球彈出后的距離為CD,

根據(jù)題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位),

2=-x-62+4,解得:x1=6- ,x2=6+,

CD=|x1-x2|=≈10

∴BD=13-6+10=17(米).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店決定購進A、B兩種紀念品.若購進A種紀念品10件,B種紀念品5件,需要1000元;若購進A種紀念品5件,B種紀念品3件,需要550.

1)求購進A、B兩種紀念品每件各需多少元?

2)若該商店決定拿出1萬元全部用來購進這兩種紀念品,考慮到市場需求,要求購進A種紀念品的數(shù)量不少于B種紀念品數(shù)量的6倍,且不超過B種紀念品數(shù)量的8倍,那么該商店共有幾種進貨方案?

3)若銷售每件A種紀念品可獲利潤20元,每件B 種紀念品可獲利潤30元,在(2)的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為的正方形四個角上,分別剪去大小相等的等腰直角三角形,當三角形的直角邊由小變大時,陰影部分的面積也隨之發(fā)生變化,它們的變化情況如下:

三角形的直角邊長/

1

2

3

4

5

6

7

8

9

10

陰影部分的面積/

398

392

382

368

350

302

272

200

(1)在這個變化過程中,自變量、因變量各是什么?

(2)請將上述表格補充完整;

(3)當?shù)妊苯侨切蔚闹苯沁呴L由增加到時,陰影部分的面積是怎樣變化的?

(4)設等腰直角三角形的直角邊長為,圖中陰影部分的面積為,寫出的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸、軸分別交于兩點,于點,點為直線上不與點重合的一個動點.

(1)求線段的長;

(2)的面積是6時,求點的坐標;

(3)軸上是否存在點,使得以、為頂點的三角形與全等,若存在,請直接寫出所有符合條件的點的坐標,否則,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某政府部門進行公務員招聘考試,其中三人中錄取一人,他們的成績如下:

測試成績

題目

文化課知識

74

87

69

面試

58

74

70

平時表現(xiàn)

87

43

65

1)按照平均成績甲、乙、丙誰應被錄?

2)若按照文化課知識、面試、平時表現(xiàn)的成績已431的比例錄取,甲、乙、丙誰應被錄。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B-1,2)是一次函數(shù)與反比例函數(shù)

)圖象的兩個交點,AC⊥x軸于CBD⊥y軸于D

(1)根據(jù)圖象直接回答:在第二象限內,當x取何值時,一次函數(shù)大于反比例函數(shù)的值?

(2)求一次函數(shù)解析式及m的值;

(3)P是線段AB上的一點,連接PCPD,若△PCA△PDB面積相等,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知n邊形的內角和θ=n-2×180°.

1甲同學說,θ能取360°;而乙同學說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;

2n邊形變?yōu)?/span>n+x邊形,發(fā)現(xiàn)內角和增加了360°,用列方程的方法確定x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD的對角線BD上一點,PEBC于點E,PFCD于點F,連接EF給出下列五個結論:①AP=EF;②△APD一定是等腰三角形;③APEF;④PD=EF.其中正確結論的番號是(

A.①③④B.①②③C.①③D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛汽車往返于甲、乙兩地之間,如果汽車以50千米/時的平均速度從甲地出發(fā),則經過6小時可到達乙地.

(1)甲、乙兩地相距多少千米?

(2)如果汽車把速度提高到 v(千米/時),那么從甲地到乙地所用時間 t(小時)將怎樣變化?

(3)寫出 t v之間的函數(shù)關系式;

(4)因某種原因,這輛汽車需在5小時內從甲地到達乙地,則此時汽車的平均速度至少應是多少?

(5)已知汽車的平均速度最大可達80千米/時,那么它從甲地到乙地最快需要多長時間?

查看答案和解析>>

同步練習冊答案