【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠ABC的平分線與AC相交于點(diǎn)D,與⊙O過(guò)點(diǎn)A的切線相交于點(diǎn)E.
(1)∠ACB= °,理由是: ;
(2)猜想△EAD的形狀,并證明你的猜想;
(3)若AB=8,AD=6,求BD.
【答案】(1)90°,直徑所對(duì)的圓周角是直角;
(2)△EAD是等腰三角形,理由見(jiàn)解析;
(3)BD=
【解析】試題分析:(1)根據(jù)AB是⊙O的直徑,點(diǎn)C在⊙O上利用直徑所對(duì)的圓周角是直角即可得到結(jié)論;
(2)根據(jù)∠ABC的平分線與AC相交于點(diǎn)D,得到∠CBD=∠ABE,再根據(jù)AE是⊙O的切線得到∠EAB=90°,從而得到∠CDB+∠CBD=90°,等量代換得到∠AED=∠EDA,從而判定△EAD是等腰三角形.
(3)證得△CDB∽△AEB后設(shè)BD=5x,則CB=4x,CD=3x,從而得到CA=CD+DA=3x+6,然后在直角三角形ACB中,利用AC2+BC2=AB2得到(3x+6)2+(4x)2=82解得x后即可求得BD的長(zhǎng).
試題解析:(1)∵AB是⊙O的直徑,點(diǎn)C在⊙O上,
∴∠ACB=90°(直徑所對(duì)的圓周角是直角)
(2)△EAD是等腰三角形.
證明:∵∠ABC的平分線與AC相交于點(diǎn)D,
∴∠CBD=∠ABE
∵AE是⊙O的切線,∴∠EAB=90°
∴∠AEB+∠EBA=90°,
∵∠EDA=∠CDB,∠CDB+∠CBD=90°,
∵∠CBE=∠ABE,
∴∠AED=∠EDA,
∴AE=AD
∴△EAD是等腰三角形.
(3)解:∵AE=AD,AD=6,
∴AE=AD=6,
∵AB=8,
∴在直角三角形AEB中,EB=10
∵∠CDB=∠E,∠CBD=∠ABE
∴△CDB∽△AEB,
∴,
∴設(shè)CB=4x,CD=3x則BD=5x,
∴CA=CD+DA=3x+6,
在直角三角形ACB中,
AC2+BC2=AB2
即:(3x+6)2+(4x)2=82,
解得:x=﹣2(舍去)或x=
∴BD=5x=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①若則為負(fù)數(shù);②若關(guān)于的方程有無(wú)數(shù)解,則a=b;③若,則關(guān)于的方程的解為;④若則;⑥若,且,則一定是為程的解;其中結(jié)論正確個(gè)數(shù)有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,在數(shù)軸上有A,B兩點(diǎn),所表示的數(shù)分別為-10,4,點(diǎn)A以每秒5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),同時(shí)點(diǎn)B以每秒3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng),如果設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問(wèn)題:
(1)運(yùn)動(dòng)前線段AB的長(zhǎng)為 ; 運(yùn)動(dòng)1秒后線段AB的長(zhǎng)為 ;
(2)運(yùn)動(dòng)t秒后,點(diǎn)A,點(diǎn)B運(yùn)動(dòng)的距離分別為 ;用t表示A,B分別為 .
(3)求t為何值時(shí),點(diǎn)A與點(diǎn)B恰好重合;
(4)在上述運(yùn)動(dòng)的過(guò)程中,是否存在某一時(shí)刻t,使得線段AB的長(zhǎng)為6,若存在,求t的值; 若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車已越來(lái)越多地進(jìn)入到各個(gè)家庭.某大型超市為緩解停車難問(wèn)題,建筑設(shè)計(jì)師提供了樓頂停車場(chǎng)的設(shè)計(jì)示意圖.按規(guī)定,停車場(chǎng)坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過(guò)坡道口的限高DF的長(zhǎng)(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了加強(qiáng)學(xué)生的安全意識(shí),組織學(xué)生參加安全知識(shí)競(jìng)賽,并從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),繪制了兩幅尚不完整的統(tǒng)計(jì)圖如圖所示,
根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)若組的頻數(shù)比組小,則頻數(shù)分布直方圖中________,________;
(2)扇形統(tǒng)計(jì)圖中________,并補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>分以上為優(yōu)秀,全校共有名學(xué)生,請(qǐng)估計(jì)成績(jī)優(yōu)秀的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃購(gòu)買A,B兩種型號(hào)的機(jī)器人搬運(yùn)材料.已知A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30kg材料,且A型機(jī)器人搬運(yùn)1000kg材料所用的時(shí)間與B型機(jī)器人搬運(yùn)800kg材料所用的時(shí)間相同.
(1)求A,B兩種型號(hào)的機(jī)器人每小時(shí)分別搬運(yùn)多少材料;
(2)該公司計(jì)劃采購(gòu)A,B兩種型號(hào)的機(jī)器人共20臺(tái),要求每小時(shí)搬運(yùn)材料不得少于2800kg,則至少購(gòu)進(jìn)A型機(jī)器人多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人分別從相距100km的A、B兩地同時(shí)出發(fā)相向而行,并以各自的速度勻速行駛.甲出發(fā)2h后到達(dá)B地立即按原路返回,返回時(shí)速度提高了30km/h,回到A地后在A地休息等乙,乙在出發(fā)5h后到達(dá)A地.(友情提醒:可以借助用線段圖分析題目)
(1)乙的速度是_______,甲從A地到B地的速度是_______,甲在出發(fā)_______小時(shí)到達(dá)A地.
(2)出發(fā)多長(zhǎng)時(shí)間兩人首次相遇?
(3)出發(fā)多長(zhǎng)時(shí)間時(shí),兩人相距30千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上A,B兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別為10和15,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)Q同時(shí)從原點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)0<t<5時(shí),用含t的式子填空:
BP=_______,AQ=_______;
(2)當(dāng)t=2時(shí),求PQ的值;
(3)當(dāng)PQ=AB時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com