【題目】在奉賢創(chuàng)建文明城區(qū)的活動中,有兩段長度相等的彩色道磚鋪設任務,分別交給甲、乙兩個施工隊同時進行施工.如圖是反映所鋪設彩色道磚的長度y(米)與施工時間x(時)之間關系的部分圖象.請解答下列問題:
(1)求乙隊在2≤x≤6的時段內(nèi),y與x之間的函數(shù)關系式;
(2)如果甲隊施工速度不變,乙隊在開挖6小時后,施工速度增加到12米/時,結果兩隊同時完成了任務.求甲隊從開始施工到完工所鋪設的彩色道磚的長度為多少米?
【答案】(1)y=5x+20;(2)110米.
【解析】
(1)設函數(shù)關系式為y=kx+b,然后利用待定系數(shù)法求一次函數(shù)解析式解答;
(2)先求出甲隊的速度,然后設甲隊從開始到完工所鋪設彩色道磚的長度為z米,再根據(jù)6小時后兩隊的施工時間相等列出方程求解即可.
解:(1)設乙隊在2≤x≤6的時段內(nèi)y與x之間的函數(shù)關系式為y=kx+b,
由圖可知,函數(shù)圖象過點(2,30),(6,50),
∴,
解得,
∴y=5x+20;
(2)由圖可知,甲隊速度是:60÷6=10(米/時),
設甲隊從開始到完工所鋪設彩色道磚的長度為z米,
依題意,得,
解得z=110,
答:甲隊從開始到完工所鋪設彩色道磚的長度為110米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y= -x+3與x軸,y軸分別相交于點B、C,經(jīng)過B、C兩點的拋物線與x軸的另一交點為A,頂點為P,且對稱軸為直線x=2.
(1)求A點的坐標;
(2)求該拋物線的函數(shù)表達式;
(3)連結AC.請問在x軸上是否存在點Q,使得以點P、B、Q為頂點的三角形與△ABC 相似,若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c交x軸于A、B兩點,其中點A坐標為(1,0),與y軸交于點C(0,﹣3).
(1)求拋物線的函數(shù)表達式;
(2)如圖①,連接AC,點P在拋物線上,且滿足∠PAB=2∠ACO.求點P的坐標;
(3)如圖②,點Q為x軸下方拋物線上任意一點,點D是拋物線對稱軸與x軸的交點,直線AQ、BQ分別交拋物線的對稱軸于點M、N.請問DM+DN是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學活動課上,小明和小紅要測量小河對岸大樹BC的高度,小紅在點A測得大樹頂端B的仰角為45°,小明從A點出發(fā)沿斜坡走米到達斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為1:2.
(1)求小明從點A到點D的過程中,他上升的高度;
(2)依據(jù)他們測量的數(shù)據(jù)能否求出大樹BC的高度?若能,請計算;若不能,請說明理由.(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(-2,0),B(0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線(k<0)經(jīng)過點D,連接BD,若四邊形OADB的面積為6,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一條拋物線與x軸相交于M,N兩點(點M在點N的左側),其頂點P在線段AB上移動,點A,B的坐標分別為(-2,-3),(1,-3),點N的橫坐標的最大值為4,則點M的橫坐標的最小值為( )
A.-1 B.-3C.-5D.-7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關于加滿油后已行駛的路程(千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;
(2)求關于的函數(shù)關系式,并計算該汽車在剩余油量5升時,已行駛的路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在國家的宏觀調(diào)控下,某市的商品房成交價由今年3月份的5000元/m2下降到5月份的4050元/m2.
(1)問4、5兩月平均每月降價的百分率是多少?
(2)如果房價繼續(xù)回落,按此降價的百分率,你預測到7月分該市的商品房成交均價是否會跌破3000元/m2?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市促銷活動,將三種水果采用甲、乙、丙三種方式搭配裝進禮盒進行銷售.每盒的總成本為盒中三種水果成本之和,盒子成本忽略不計.甲種方式每盒分別裝三種水果;乙種方式每盒分別裝三種水果 .甲每盒的總成本是每千克 水果成本的倍,每盒甲的銷售利潤率為;每盒甲比每盒乙的售價低;每盒丙在成本上提高標價后打八折出售,獲利為每千克 水果成本的倍.當銷售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為時,則銷售總利潤率為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com