【題目】已知為等邊三角形,為射線上一點(diǎn),為射線上一點(diǎn),.
(1)如圖1,當(dāng)點(diǎn)在的延長(zhǎng)線上且時(shí),是的中線嗎?請(qǐng)說明理由;
(2)如圖2,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),寫出之間的數(shù)量關(guān)系,請(qǐng)說明理由;
(3)如圖3,當(dāng)點(diǎn)在線段的延長(zhǎng)線上,點(diǎn)在線段上時(shí),請(qǐng)直接寫出的數(shù)量關(guān)系.
【答案】(1)是的中線,理由詳見解析;(2),理由詳見解析;(3).
【解析】
(1)利用△ABC是等邊三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,證明∠CAD=∠E =30°,即可解決問題.
(2)在AB上取BH=BD,連接DH,證明AHD≌△DCE得出DH=CE,得出AE=AB+BD,
(3)在AB上取AF=AE,連接DF,利用△AFD≌△EFD得出角的關(guān)系,得出△BDF是等腰三角形,根據(jù)邊的關(guān)系得出結(jié)論AB=BD+AE.
(1)解:如圖1,結(jié)論:AD是△ABC的中線.理由如下:
∵△ABC是等邊三角形,
∴AB=AC,∠BAC=∠B=∠ACB=60°,
∵CD=CE,
∴∠CDE=∠E,
∵∠ACD=∠CDE+∠E=60°,
∴∠E=30°,
∵DA=DE,
∴∠DAC=∠E=30°,
∵∠BAC=60°,
∴∠DAB=∠CAD,
∵AB=AC,
∴BD=DC,
∴AD是△ABC的中線.
(2)結(jié)論:AB+BD=AE,理由如下:
如圖2,在AB上取BH=BD,連接DH,
∵BH=BD,∠B=60°,
∴△BDH為等邊三角形,AB-BH=BC-BD,
∴∠BHD=60°,BD=DH,AH=DC,
∵AD=DE,
∴∠E=∠CAD,
∴∠BAC-∠CAD=∠ACB-∠E
∴∠BAD=∠CDE,
∵∠BHD=60°,∠ACB=60°,
∴180°-∠BHD=180°-∠ACB,
∴∠AHD=∠DCE,
∴在△AHD和△DCE,
∴△AHD≌△DCE(AAS),
∴DH=CE,
∴BD=CE,
∴AE=AC+CE=AB+BD.
(3)結(jié)論:AB=BD+AE,理由如下:
如圖3,在AB上取AF=AE,連接DF,
∵△ABC為等邊三角形,
∴∠BAC=∠ABC=60°,
∴△AFE是等邊三角形,
∴∠FAE=∠FEA=∠AFE=60°,
∴EF∥BC,
∴∠EDB=∠DEF,
∵AD=DE,
∴∠DEA=∠DAE,
∴∠DEF=∠DAF,
∵DF=DF,AF=EF,
在△AFD和△EFD中,
,
∴△AFD≌△EFD(SSS)
∴∠ADF=∠EDF,∠DAF=∠DEF,
∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,
∵∠EDB=∠DEF,
∴∠FDB=∠DFB,
∴DB=BF,
∵AB=AF+FB,
∴AB=BD+AE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“朗讀者”節(jié)目的影響下,某中學(xué)開展了“好書伴我成長(zhǎng)”的讀書活動(dòng),為了解3月份七年級(jí)300名學(xué)生讀書情況,隨機(jī)調(diào)查了七年級(jí)50個(gè)學(xué)生讀書的冊(cè)數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表所示:
冊(cè)數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 4 | 12 | 16 | 17 | 1 |
關(guān)于這組數(shù)據(jù),下列說法正確的是( 。
A. 眾數(shù)是 17 B. 平均數(shù)是 2 C. 中位數(shù)是 2 D. 方差是 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)判斷的形狀,證明你的結(jié)論;
(3)點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的值最小時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】服裝店10月份以每套500元的進(jìn)價(jià)購進(jìn)一批羽絨服,當(dāng)月以標(biāo)價(jià)銷售,銷售額14000元,進(jìn)入11月份搞促銷活動(dòng),每件降價(jià)50元,這樣銷售額比10月份增加了5500元,售出的件數(shù)是10月份的1.5倍.
(1)求每件羽絨服的標(biāo)價(jià)?
(2)進(jìn)入12月份,該服裝店決定把剩余羽絨服按10月份標(biāo)價(jià)打九折銷售,結(jié)果全部賣掉,而且這批羽絨服總獲利不少于12700元,問這批羽絨服至少購進(jìn)多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點(diǎn),AC∥OP,M是直徑AB上的動(dòng)點(diǎn),A與直線CM上的點(diǎn)連線距離的最小值為d,B與直線CM上的點(diǎn)連線距離的最小值為f.
(1)求證:PC是⊙O的切線;
(2)設(shè)OP=AC,求∠CPO的正弦值;
(3)設(shè)AC=9,AB=15,求d+f的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(為常數(shù)).
若該二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)不同的交點(diǎn),求的取值范圍;
已知該二次函數(shù)的圖象與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),頂點(diǎn)為,若存在點(diǎn)使得與面積相等,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,從在格點(diǎn)上的點(diǎn)A,B,C,D中任取三點(diǎn),所構(gòu)成的三角形恰好是直角三角形的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com