【題目】如圖,AO⊥OM,OA=6cm,點(diǎn)B為射線OM上的一個(gè)動(dòng)點(diǎn),分別以OB、AB為直角邊,點(diǎn)B為直角頂點(diǎn),在OM兩側(cè)作等腰Rt△OBF、等腰Rt△ABE,連接EF交OM于P點(diǎn),當(dāng)點(diǎn)B在射線OM上移動(dòng)時(shí),PB的長(zhǎng)度是_____.
【答案】3
【解析】
作輔助線,首先證明△ABO≌△BEN,得到BO=ME;進(jìn)而證明△BPF≌△MPE,即可解決問(wèn)題.
解:如圖,過(guò)點(diǎn)E作EN⊥BM,垂足為點(diǎn)N,
∵∠AOB=∠ABE=∠BNE=90°,
∴∠ABO+∠BAO=∠ABO+∠NBE=90°,
∴∠BAO=∠NBE,
∵△ABE、△BFO均為等腰直角三角形,
∴AB=BE,BF=BO;
在△ABO與△BEN中,
,
∴△ABO≌△BEN(AAS),
∴BO=NE,BN=AO;
∵BO=BF,
∴BF=NE,
在△BPF與△NPE中,
,
∴△BPF≌△NPE(AAS),
∴BP=AO==3,
故答案為:3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中∠C=55°,∠B=∠D=90°,E,F分別是BC,DC上的點(diǎn),當(dāng)△EAF周長(zhǎng)最小時(shí),∠EAF的度數(shù)為( )
A.55°B.70°C.125°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們經(jīng)常遇到需要分類的問(wèn)題,畫“樹(shù)形圖”可以幫我們不重復(fù)、不遺漏地分類.
(例題)在等腰三角形ABC中,若∠A=80°,求∠B的度數(shù).
∠A、∠B都可能是頂角或底角,因此需要分成如圖1所示的3類,這樣的圖就是樹(shù)形圖,據(jù)此可求出∠B=
(應(yīng)用)
(1)已知等腰三角形ABC周長(zhǎng)為19,AB=7,仿照例題畫出樹(shù)形圖,并直接寫出BC的長(zhǎng)度;
(2)將一個(gè)邊長(zhǎng)為5、12、13的直角三角形拼上一個(gè)三角形后可以拼成一個(gè)等腰三角形,圖2就是其中的一種拼法,請(qǐng)你畫出其他所有可能的情形,并在圖上標(biāo)出所拼成等腰三角形的腰的長(zhǎng)度.(選用圖3中的備用圖畫圖,每種情形用一個(gè)圖形單獨(dú)表示,并用①、②、③…編號(hào),若備用圖不夠,請(qǐng)自己畫圖補(bǔ)充)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拓展與探索:如圖,在正△ABC中,點(diǎn)E在AC上,點(diǎn)D在BC的延長(zhǎng)線上.
(1)如圖1,AE=EC=CD,求證:BE=ED;
(2)如圖2,若E為AC上異于A、C的任一點(diǎn),AE=CD,(1)中結(jié)論是否仍然成立?為什么?
(3)若E為AC延長(zhǎng)線上一點(diǎn),且AE=CD,試探索BE與ED間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),AB=DB,BE平分∠ABC,交AC邊于點(diǎn)E,連接DE.
(1)求證:△ABE≌△DBE;
(2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.
(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)經(jīng)過(guò)1秒時(shí),△BPD與△CQP是否全等,請(qǐng)判斷并說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD≌△CPQ?
(2)若點(diǎn)Q以②的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC的三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間,點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上會(huì)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠ABC的平分線交⊙O于點(diǎn)D,DE⊥BC于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)D作DF⊥AB于點(diǎn)F,若BE=3,DF=3,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com