【題目】小穎和小紅兩位同學在學習“概率”時,做投擲骰子(質(zhì)地均勻的正方體)試驗,她們共做了60次試驗,試驗的結(jié)果如下:
朝上的點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 7 | 9 | 6 | 8 | 20 | 10 |
(1)計算“3點朝上”的頻率和“5點朝上”的頻率.
(2)小穎說:“根據(jù)上述試驗,一次試驗中出現(xiàn)5點朝上的概率最大”;小紅說:“如果投擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次”.小穎和小紅的說法正確嗎?為什么?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OD恰為∠BOE的平分線.
(1)圖中∠BOC的補角是 把符合條件的角都填出來);
(2)若∠AOD=145°,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O為AC邊上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的外角平分線CF于點F,交∠ACB內(nèi)角平分線CE于E.
(1)求證:EO=FO;
(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論;
(3)若AC邊上存在點O,使四邊形AECF是正方形,猜想△ABC的形狀并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把帶有指針的圓形轉(zhuǎn)盤A、B分別分成4等份、3等份的扇形區(qū)域,并在每一個小區(qū)域內(nèi)標上數(shù)字(如圖所示).小明、小樂兩個人玩轉(zhuǎn)盤游戲,游戲規(guī)則是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止時,若指針所指兩區(qū)域的數(shù)字之積為3的倍數(shù),則小明勝;否則,小樂勝.(若有指針落在分割線上,則無效,需重新轉(zhuǎn)動轉(zhuǎn)盤)
(1)試用列表或畫樹狀圖的方法,求小明獲勝的概率;
(2)請問這個游戲規(guī)則對小明、小樂雙方公平嗎?做出判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與x軸相交于A、B兩點,與y軸相交于點C(0,3).且點A的坐標為(﹣1,0),點B的坐標為(3,0),點P是拋物線上第一象限內(nèi)的一個點.
(1)求拋物線的函數(shù)表達式;
(2)連PO、PB,如果把△POB沿OB翻轉(zhuǎn),所得四邊形POP′B恰為菱形,那么在拋物線的對稱軸上是否存在點Q,使△QAB與△POB相似?若存在求出點Q的坐標;若不存在,說明理由;
(3)若(2)中點Q存在,指出△QAB與△POB是否位似?若位似,請直接寫出其位似中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,一次函數(shù)y=kx+3的圖象經(jīng)過點A(1,4).
(1)求這個一次函數(shù)的解析式;
(2)試判斷點B(-1,5),C(0,3),D(2,1)是否在這個一次函數(shù)的圖象上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com