【題目】如圖,矩形的頂點(diǎn),分別在菱形的邊,上,頂點(diǎn)在菱形的對(duì)角線上,相交于點(diǎn)


1)求證:

2)若中點(diǎn),,求菱形的周長(zhǎng).

【答案】1)見(jiàn)解析;(28

【解析】

1)根據(jù)矩形的性質(zhì)得到EH=FG,EHFG,得到∠GFH=EHF,求得∠BFG=DHE,根據(jù)菱形的性質(zhì)得到ADBC,得到∠GBF=EDH,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
2)連接EG,根據(jù)菱形的性質(zhì)得到AD=BC,ADBC,求得AE=BG,AEBG,得到四邊形ABGE是平行四邊形,得到AB=EG,于是得到結(jié)論.

1)∵四邊形EFGH是矩形,
EH=FG,EHFG,
∴∠GFH=EHF,
∵∠BFG=180°-GFH,∠DHE=180°-EHF
∴∠BFG=DHE,
∵四邊形ABCD是菱形,
ADBC
∴∠GBF=EDH,
∴△BGF≌△DEHAAS),
BG=DE;
2)∵四邊形ABCD是菱形,
AD=BC,ADBC,
EAD中點(diǎn),
AE=ED,
BG=DE,
AE=BG,AEBG
∴四邊形ABGE是平行四邊形,
AB=EG
EG=FH=2,
AB=2,
∴菱形ABCD的周長(zhǎng)=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,ABAC20,tanB,點(diǎn)DBC邊上的動(dòng)點(diǎn)(D不與點(diǎn)B,C重合).以D為頂點(diǎn)作∠ADE∠B,射線DEAC邊于點(diǎn)E,過(guò)點(diǎn)AAF⊥AD交射線DE于點(diǎn)F,連接CF

1)求證:△ABD∽△DCE;

2)當(dāng)DE∥AB時(shí)(如圖2),求AE的長(zhǎng);

3)點(diǎn)DBC邊上運(yùn)動(dòng)的過(guò)程中,是否存在某個(gè)位置,使得DFCF?若存在,求出此時(shí)BD的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,是銳角,過(guò)兩點(diǎn)以為半徑作

1)如圖,對(duì)角線交于點(diǎn),若,且過(guò)點(diǎn),求的值

2與邊的延長(zhǎng)線交于點(diǎn),的延長(zhǎng)線交于點(diǎn),連接,若,的長(zhǎng)為,當(dāng)時(shí),求的度數(shù)(提示:可再備用圖上補(bǔ)全示意圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,I是△ABC的內(nèi)心,OAB邊上一點(diǎn),⊙O經(jīng)過(guò)B點(diǎn)且與AI相切于I點(diǎn).若tanBAC,則sinC的值為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價(jià)格在30元至80元之間(含30元和80元),銷售過(guò)程中的管理、倉(cāng)儲(chǔ)、運(yùn)輸?shù)雀鞣N費(fèi)用(不含生產(chǎn)成本)總計(jì)50萬(wàn)元,其銷售量y(萬(wàn)個(gè))與銷售價(jià)格(元/個(gè))的函數(shù)關(guān)系如圖所示.

(1)當(dāng)30x60時(shí),求y與x的函數(shù)關(guān)系式;

(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤(rùn)w(萬(wàn)元)與銷售價(jià)格x(元/個(gè))的函數(shù)關(guān)系式;

(3)銷售價(jià)格應(yīng)定為多少元時(shí),獲得利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店以每千克8元的價(jià)格收購(gòu)蘋(píng)果若干千克,銷售了部分蘋(píng)果后,余下的蘋(píng)果以每千克降價(jià)4元銷售,全部售完。銷售金額y(元)與銷售量x(千克)之間的關(guān)系如圖所示。請(qǐng)根據(jù)圖象提供的信息完成下列問(wèn)題:

1)降價(jià)前蘋(píng)果的銷售單價(jià)是 /千克;

2)求降價(jià)后銷售金額y(元)與銷售量x千克之間的函數(shù)解析式,并寫(xiě)出自變量的取值范圍;

3)該水果店這次銷售蘋(píng)果盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了預(yù)防新冠肺炎,某藥店銷售甲、乙兩種防護(hù)口罩,已知甲口罩每袋的售價(jià)比乙口罩多5元,小明從該藥店購(gòu)買了3袋甲口罩和2袋乙口罩共花費(fèi)115元.

1)求該藥店甲、乙兩種口罩每袋的售價(jià)分別為多少元?

2)根據(jù)消費(fèi)者需求,藥店決定用不超過(guò)8000元購(gòu)進(jìn)甲、乙兩種口罩共400袋.已知甲口罩每袋的進(jìn)價(jià)為22.2元,乙口罩每袋的進(jìn)價(jià)為17.8元,要使藥店獲利最大,應(yīng)該購(gòu)進(jìn)甲、乙兩種口罩各多少袋,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解初三學(xué)生的視力情況,對(duì)全體初三學(xué)生的視力進(jìn)行了檢測(cè),將所得數(shù)據(jù)整理后畫(huà)出頻率分布直方圖(如圖),已知圖中從左到右第一、二、三、五小組的頻率分別為0.05,0.1,0.25,0.1,如果第四小組的頻數(shù)是180人,那么該校初三共有_____位學(xué)生.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃投資萬(wàn)元引進(jìn)一條汽車配件流水生產(chǎn)線,經(jīng)過(guò)調(diào)研知道該流水生產(chǎn)線的年產(chǎn)量為件,每件總成本為萬(wàn)元,每件出廠價(jià)萬(wàn)元;流水生產(chǎn)線投產(chǎn)后,從第年到第年的維修、保養(yǎng)費(fèi)用累計(jì)(萬(wàn)元)如下表:

···

維修、保養(yǎng)費(fèi)用累計(jì)萬(wàn)元

···

若上表中第年的維修、保養(yǎng)費(fèi)用累計(jì)(萬(wàn)元)的數(shù)量關(guān)系符合我們已經(jīng)學(xué)過(guò)的一次函數(shù)、二次函數(shù)、反比例函數(shù)中某一個(gè).

1)求出關(guān)于的函數(shù)解析式;

2)投產(chǎn)第幾年該公司可收回萬(wàn)元的投資?

3)投產(chǎn)多少年后,該流水線要報(bào)廢(規(guī)定當(dāng)年的盈利不大于維修、保養(yǎng)費(fèi)用累計(jì)即報(bào)費(fèi))?

查看答案和解析>>

同步練習(xí)冊(cè)答案