【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價(jià)格在30元至80元之間(含30元和80元),銷售過程中的管理、倉(cāng)儲(chǔ)、運(yùn)輸?shù)雀鞣N費(fèi)用(不含生產(chǎn)成本)總計(jì)50萬(wàn)元,其銷售量y(萬(wàn)個(gè))與銷售價(jià)格(元/個(gè))的函數(shù)關(guān)系如圖所示.
(1)當(dāng)30≤x≤60時(shí),求y與x的函數(shù)關(guān)系式;
(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤(rùn)w(萬(wàn)元)與銷售價(jià)格x(元/個(gè))的函數(shù)關(guān)系式;
(3)銷售價(jià)格應(yīng)定為多少元時(shí),獲得利潤(rùn)最大,最大利潤(rùn)是多少?
【答案】(1)y=﹣0.1x+8(30≤x≤60)(2)w=(3)當(dāng)銷售價(jià)格定為50元/件或80元/件,獲得利潤(rùn)最大,最大利潤(rùn)是40萬(wàn)元
【解析】
試題分析:(1)由圖象知,當(dāng)30≤x≤60時(shí),圖象過(60,2)和(30,5),運(yùn)用待定系數(shù)法求解析式即可;
(2)根據(jù)銷售產(chǎn)品的純利潤(rùn)=銷售量×單個(gè)利潤(rùn),分30≤x≤60和60<x≤80列函數(shù)表達(dá)式;
(3)當(dāng)30≤x≤60時(shí),運(yùn)用二次函數(shù)性質(zhì)解決,當(dāng)60<x≤80時(shí),運(yùn)用反比例函數(shù)性質(zhì)解答.
試題解析:(1)當(dāng)x=60時(shí),y==2,
∴當(dāng)30≤x≤60時(shí),圖象過(60,2)和(30,5),
設(shè)y=kx+b,則
,
解得:,
∴y=﹣0.1x+8(30≤x≤60);
(2)根據(jù)題意,當(dāng)30≤x≤60時(shí),W=(x﹣20)y﹣50=(x﹣20)(﹣0.1x+8)﹣50=﹣0.1x2+10x﹣210,
當(dāng)60<x≤80時(shí),W=(x﹣20)y﹣50=(x﹣20)·﹣50=﹣+70,
綜上所述:W=;
(3)當(dāng)30≤x≤60時(shí),W=﹣0.1x2+10x﹣210=﹣0.1(x﹣50)2+40,
當(dāng)x=50時(shí),W最大=40(萬(wàn)元);
當(dāng)60<x≤80時(shí),W=﹣+70,
∵﹣2400<0,W隨x的增大而增大,
∴當(dāng)x=80時(shí),W最大=﹣+70=40(萬(wàn)元),
答:當(dāng)銷售價(jià)格定為50元/件或80元/件,獲得利潤(rùn)最大,最大利潤(rùn)是40萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表所示為裝運(yùn)、銷售甲、乙、丙三種蔬菜的重量及利潤(rùn)。某公司計(jì)劃用20輛汽車裝運(yùn)甲、乙、丙三種蔬菜共36噸到某地銷售.規(guī)定每輛汽車滿載,每車只裝一種蔬菜,每種蔬菜不少于一車。應(yīng)如何安排,可使公司獲得利潤(rùn)18300元?
甲 | 乙 | 丙 | |
每輛汽車裝運(yùn)的噸數(shù) | 2 | 1 | 1.5 |
每噸蔬菜可獲利潤(rùn)(百元) | 5 | 7 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC為等邊三角形,P為BC上一點(diǎn),Q為AC上一點(diǎn),AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,則對(duì)下面四個(gè)結(jié)論判斷正確的是( )
①點(diǎn)P在∠BAC的平分線上, ②AS=AR, ③QP∥AR, ④△BRP≌△QSP.
A. 全部正確; B. 僅①和②正確; C. 僅②③正確; D. 僅①和③正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點(diǎn).AB⊥x軸于B,且S△ABO=.
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A.C的坐標(biāo)和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉淇同學(xué)用配方法推導(dǎo)一元二次方程ax2+bx+c=0(a≠0)的求根公式時(shí),對(duì)于b2﹣4ac>0的情況,她是這樣做的:
由于a≠0,方程ax2+bx+c=0變形為:
x2+x=﹣,…第一步
x2+x+()2=﹣+()2,…第二步
(x+)2=,…第三步
x+=(b2﹣4ac>0),…第四步
x=,…第五步
嘉淇的解法從第 步開始出現(xiàn)錯(cuò)誤;事實(shí)上,當(dāng)b2﹣4ac>0時(shí),方程ax2+bx+c=0(a≠O)的求根公式是 .
用配方法解方程:x2﹣2x﹣24=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D、E分別在邊AB、AC上,DE∥BC.
(1)試問△ADE是否是等腰三角形,并說(shuō)明理由.
(2)若M為DE上的點(diǎn),且BM平分,CM平分,若的周長(zhǎng)為20,BC=8.求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點(diǎn)A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點(diǎn)M,△AOM的面積為3.
(1)求反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個(gè)頂點(diǎn)在反比例函數(shù)的圖象上,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅1、紅2),1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出一個(gè)球,再?gòu)挠嘞碌?/span>3個(gè)球中任意摸出1個(gè)球,請(qǐng)用畫樹狀圖或列表法求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)C,連接PO,若△POC的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com