【題目】如圖,AB是的直徑,AC為弦,的平分線交于點(diǎn)D,過(guò)點(diǎn)D的切線交AC的延長(zhǎng)線于點(diǎn)E.
求證:;
.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)連接OD,根據(jù)等腰三角形的性質(zhì)結(jié)合角平分線的性質(zhì)可得出∠CAD=∠ODA,利用“內(nèi)錯(cuò)角相等,兩直線平行”可得出AE//OD,結(jié)合切線的性質(zhì)即可證出DE⊥AE;
(2)過(guò)點(diǎn)D作DM⊥AB于點(diǎn)M,連接CD、DB,根據(jù)角平分線的性質(zhì)可得出DE=DM,結(jié)合AD=AD、∠AED=∠AMD=90°即可證出△DAE≌△DAM(SAS),根據(jù)全等三角形的性質(zhì)可得出AE=AM,由∠EAD=∠MAD可得出,進(jìn)而可得出CD=BD,結(jié)合DE=DM可證出Rt△DEC≌Rt△DMB(HL),根據(jù)全等三角形的性質(zhì)可得出CE=BM,結(jié)合AB=AM+BM即可證出AE+CE=AB.
連接OD,如圖1所示,
,AD平分,
,,
,
,
是的切線,
,
,
;
過(guò)點(diǎn)D作于點(diǎn)M,連接CD、DB,如圖2所示,
平分,,,
,
在和中,,
≌,
,
,
,
,
在和中,,
≌,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為提升硬件設(shè)施,決定采購(gòu)80臺(tái)電腦,現(xiàn)有A,B兩種型號(hào)的電腦可供選擇.已知每臺(tái)A型電腦比B型的貴2000元,2臺(tái)A型電腦與3臺(tái)B型電腦共需24000元.
(1)分別求A,B兩種型號(hào)電腦的單價(jià);
(2)若A,B兩種型號(hào)電腦的采購(gòu)總價(jià)不高于38萬(wàn)元,則A型電腦最多采購(gòu)多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在中,C是BP邊上一點(diǎn),PA是的切線,是的外接圓,AD是的直徑,且交BP于點(diǎn)E.
求證:;
過(guò)點(diǎn)C作,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)G,若,AF::3,
①求CF的長(zhǎng);
②求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,∠A=75°,點(diǎn)D是AB的中點(diǎn).將△ACD沿CD翻折得到△A′CD,連接A′B.
(1)求證:CD∥A′B;
(2)若AB=4,求A′B2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】陳杰騎自行車去上學(xué),當(dāng)他以往常的速度騎了一段路時(shí),忽然想起要買某本書,于是又折回到剛經(jīng)過(guò)的一家書店,買到書后繼續(xù)趕去學(xué)校.以下是他本次上學(xué)的路程與所用時(shí)間的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)陳杰家到學(xué)校的距離是多少米?書店到學(xué)校的距離是多少米?
(2)陳杰在書店停留了多少分鐘?本次上學(xué)途中,陳杰一共行駛了多少米?
(3)在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段陳杰騎車速度最快?最快的速度是多少米?
(4)如果陳杰不買書,以往常的速度去學(xué)校,需要多少分鐘?本次上學(xué)比往常多用多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了幫助本市一名患“白血病”的高中生,某班15名同學(xué)積極捐款,他們捐款數(shù)額如下表:
捐款的數(shù)額(單位:元) | 5 | 10 | 20 | 50 | 100 |
人數(shù)(單位:個(gè)) | 2 | 4 | 5 | 3 | 1 |
關(guān)于這15名同學(xué)所捐款的數(shù)額,下列說(shuō)法正確的是
A.眾數(shù)是100 B.平均數(shù)是30 C.極差是20 D.中位數(shù)是20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保護(hù)環(huán)境,某企業(yè)決定購(gòu)買10臺(tái)污水處理設(shè)備;現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格、月處理污水量及年消耗費(fèi)如下表:
A型 | B型 | |
價(jià)格(萬(wàn)元/臺(tái)) | 12 | 10 |
處理污水量(噸/月) | 240 | 200 |
年消耗費(fèi)(萬(wàn)元/臺(tái)) | 1 | 1 |
經(jīng)預(yù)算,該企業(yè)購(gòu)買設(shè)備的資金不高于105萬(wàn)元。
(1) 請(qǐng)你設(shè)計(jì)該企業(yè)有幾種購(gòu)買方案;
(2)若該企業(yè)每月產(chǎn)生的污水量為2040噸,為了節(jié)約資金,應(yīng)選擇哪種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.求證:△ABD≌△CAF;
(2)如圖2,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F都在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為∠BAC的外角平分線上一點(diǎn),并且滿足BD=CD,過(guò)D作DE⊥AC于E,DF⊥AB交BA的延長(zhǎng)線于F,則下列結(jié)論:①;②∠DBC=∠DCB;③CE=AB+AE④∠BDC=∠BAC,其中正確的結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com