【題目】(1)如圖,AC平分∠DAB,∠DCA=∠DAC,試說明ABCD的位置關(guān)系,并予以說明。

(2)如圖,在(1)的結(jié)論下,AB的下方兩點(diǎn)E,F滿足:BF平分∠ABE,DF平分∠CDE,若∠DFB=20°,∠CDE=70°,求∠ABE的度數(shù)。

【答案】(1)AB∥CD(2)30°

【解析】分析:(1)先由圖形可猜測(cè)ABCD,要證明ABCD,只要證明∠2=3,再運(yùn)用角平分線以及∠1=2即可求解;

(2)過FFMCD,運(yùn)用平行線的傳遞性可得FMCDAB,由角平分線的定義可得 再運(yùn)用平行線的性質(zhì)可得 進(jìn)而得出∠1=15°,進(jìn)而求解即可.

詳解:(1)ABCD.

證明:∵AC平分∠DAB,

∴∠1=3,

又∵∠1=2,

∴∠2=3,

ABCD.

(2)過FFMCD,

CDAB,

FMCDAB,

∵∠CDE=70°,DF平分∠CDE,

∴∠CDF=35°,

CDFM,

∴∠1=15°,

ABFM,

∴∠2=1=15°,

BF平分∠ABE,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(m+3,m+1)在直角坐標(biāo)系的x軸上,則P點(diǎn)坐標(biāo)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)學(xué)生在學(xué)習(xí)《數(shù)據(jù)的分析》后,進(jìn)行了檢測(cè),現(xiàn)將該校八(1)班學(xué)生的成績(jī)統(tǒng)計(jì)如下表,并繪制成條形統(tǒng)計(jì)圖(不完整).

分?jǐn)?shù)(分)

人數(shù)(人)

68

4

78

7

80

3

88

5

90

10

96

6

100

5


(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該班學(xué)生成績(jī)的平均數(shù)為86.85分,寫出該班學(xué)生成績(jī)的中位數(shù)和眾數(shù);
(3)該校八年級(jí)共有學(xué)生500名,估計(jì)有多少學(xué)生的成績(jī)?cè)?6分以上(含96分)?
(4)小明的成績(jī)?yōu)?8分,他的成績(jī)?nèi)绾危瑸槭裁矗?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:“兩邊及其中一邊的對(duì)角分別相等的兩個(gè)三角形不一定全等”.但是,小亮發(fā)現(xiàn):當(dāng)這兩個(gè)三角形都是銳角三角形時(shí),它們會(huì)全等,除小亮的發(fā)現(xiàn)之外,當(dāng)這兩個(gè)三角形都是 時(shí),它們也會(huì)全等;當(dāng)這兩個(gè)三角形其中一個(gè)三角形是銳角三角形,另一個(gè)是 時(shí),它們一定不全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)CD,在直線l3上有點(diǎn)P(點(diǎn)P與點(diǎn)C、D不重合),點(diǎn)A在直線l1上,點(diǎn)B在直線l2上。

(1)如果點(diǎn)PC、D之間運(yùn)動(dòng)時(shí),試說明∠1+∠3=∠2;

(2)如果點(diǎn)P在直線l1的上方運(yùn)動(dòng)時(shí),試探索∠1,∠2,∠3之間的關(guān)系又是如何?

(3)如果點(diǎn)P在直線l2的下方運(yùn)動(dòng)時(shí),試探索∠PAC,∠PBD,∠APB之間的關(guān)系又是如何? (直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB=90°,CA=CB,DAC上一點(diǎn),EBC的延長(zhǎng)線上,且AE=BD,BD的延長(zhǎng)線與AE交于點(diǎn)F.試通過觀察、測(cè)量、猜想等方法來探索BFAE有何特殊的位置關(guān)系,并說明你猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(5,﹣3)所在的象限是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)正數(shù)的平方根是2a+1和﹣a+2,則a_____,這個(gè)正數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是以BC為直徑的△ABC的外接圓,OP∥AC,且與BC的垂線交于點(diǎn)P,OP交AB于點(diǎn)D,BC、PA的延長(zhǎng)線交于點(diǎn)E.
(1)求證:PA是⊙O的切線;
(2)若sinE= ,PA=6,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案