【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于點,,與直線交于點,直線與軸交于點.
(1)求該拋物線的解析式.
(2)點是拋物線上第四象限上的一個動點,連接,,當(dāng)的面積最大時,求點的坐標(biāo).
(3)將拋物線的對稱軸向左平移3個長度單位得到直線,點是直線上一點,連接,,若直線上存在使最大的點,請直接寫出滿足條件的點的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)P(3,﹣);(3)點E的坐標(biāo)為(﹣2,2)或(﹣2,﹣2).
【解析】
(1)用交點式函數(shù)表達(dá)式得:y=a(x+2)(x-4)=a(x2-2x-8),即可求解;
(2)由S△PCD=S△PDO+S△PCO-S△OCD,即可求解;
(3)如圖,經(jīng)過點O、B的圓F與直線l相切于點E,此時,sin∠BEO最大,即可求解.
解:(1)用交點式函數(shù)表達(dá)式得:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),
即﹣8a=﹣3,解得:a=,
則函數(shù)的表達(dá)式為:;
(2)y=x﹣3,令y=0,則x=2,即點D(2,0),
連接OP,設(shè)點P(x,),
S△PCD=S△PDO+S△PCO﹣S△OCD
=,
∵﹣<0,∴S△PCD有最大值,
此時點P(3,﹣);
(3)如圖,經(jīng)過點O、B的圓F與直線l相切于點E,此時,sin∠BEO最大,
過圓心F作HF⊥x軸于點H,則OH=OB=2=OA,OF=EF=4,
∴HF=2,過點E的坐標(biāo)為(﹣2,﹣2);
同樣當(dāng)點E在x軸的上方時,其坐標(biāo)為(﹣2,2);
故點E的坐標(biāo)為(﹣2,2)或(﹣2,﹣2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l的解析式為y=﹣x+4,它與x軸和y軸分別相交于A,B兩點.平行于直線l的直線m從原點O出發(fā),沿x軸的正方向以每秒1個單位長度的速度運動.它與x軸和y軸分別相交于C,D兩點,運動時間為t秒(0≤t≤4),以CD為斜邊作等腰直角三角形CDE(E,O兩點分別在CD兩側(cè)).若△CDE和△OAB的重合部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進(jìn)行下去….若點A(,0),B(0,2),則點B2016的坐標(biāo)為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生對博鰲論壇會的了解情況,某中學(xué)隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果記作“非常了解,了解,了解較少,不了解.”四類分別統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了______名學(xué)生;扇形統(tǒng)計圖中所在的扇形的圓心角度數(shù)為______;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1600名學(xué)生,請你估計對博鰲論壇會的了解情況為“非常了解”的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦“打造平安校園”活動,隨機(jī)抽取了部分學(xué)生進(jìn)行校園安全知識測試將這些學(xué)生的測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格,并將測試結(jié)果繪制成如下統(tǒng)計圖請你根據(jù)圖中信息,解答下列問題:
本次參加校園安全知識測試的學(xué)生有多少人?
計算B級所在扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;
若該校有學(xué)生1000名,請根據(jù)測試結(jié)果,估計該校達(dá)到及格和及格以上的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班開展了“讀一本好書”的活動,班委會對學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個類別,每位同學(xué)僅選一項.根據(jù)調(diào)査結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | a | 0.5 |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | b | 1 |
根據(jù)圖表提供的信息,回答下列問題:
(1)直接寫出:a= .b= m= ;
(2)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團(tuán),請求選取的2人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PBEF;③PFEF=2;④EFEP=4AOPO.其中正確的是( 。
A. ①②③B. ①②④C. ①③④D. ③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com