【題目】1)計(jì)算: 2sin45°+2π01

2先化簡,再求值 a2b2),其中a=b=2

【答案】(1) -2 (2)-

【解析】試題分析:(1)將原式第一項(xiàng)被開方數(shù)8變?yōu)?/span>4×2,利用二次根式的性質(zhì)化簡第二項(xiàng)利用特殊角的三角函數(shù)值化簡,第三項(xiàng)利用零指數(shù)公式化簡,最后一項(xiàng)利用負(fù)指數(shù)公式化簡,把所得的結(jié)果合并即可得到最后結(jié)果;

(2)先把a2b2分解因式約分化簡,然后將ab的值代入化簡后的式子中計(jì)算,即可得到原式的值.

解:1﹣2sin45°+2﹣π01

=2﹣2×+1﹣3

=2+1﹣3

=﹣2;

2a2﹣b2

=a+b)(a﹣b

=a+b

當(dāng)a=,b=﹣2時(shí),原式=+﹣2=﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的中線,AEBC,BEAD于點(diǎn)F,且AF=DF.

(1)求證:AFEODFB;

(2)求證:四邊形ADCE是平行四邊形;

(3)當(dāng)AB、AC之間滿足什么條件時(shí),四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A. B兩地果園分別有蘋果30噸和40噸,C. D兩地的農(nóng)貿(mào)市場分別需求蘋果20噸和50噸。已知從A. B兩地到C. D兩地的運(yùn)價(jià)如表:

(1)填空:若從A果園運(yùn)到C地的蘋果為10噸,則從A果園運(yùn)到D地的蘋果為___噸,從B果園運(yùn)到C地的蘋果為___噸,從B果園運(yùn)到D地的蘋果為___噸,總運(yùn)輸費(fèi)為___元;

(2)如果總運(yùn)輸費(fèi)為750元時(shí),那么從A果園運(yùn)到C地的蘋果為多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進(jìn)A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進(jìn)多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列兩個(gè)式子:22×+1,55×+1.給出定義如下:我們稱使等式abab+1成立的一對有理數(shù)ab為“共生有理數(shù)對”,記為(a,b),數(shù)對(2,),和(5,)都是“共生有理數(shù)對”.

1)數(shù)對(﹣21)和(3,)中是“共生有理數(shù)對”的是  ;

2)若(a,﹣)是“共生有理數(shù)對”,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知P12).

1)在平面直角坐標(biāo)系中描出點(diǎn)P(保留畫圖痕跡);

2)如果將點(diǎn)P向左平移3個(gè)單位長度,再向上平移1個(gè)單位長度得到點(diǎn)P',則點(diǎn)P'的坐標(biāo)為 

3)點(diǎn)A在坐標(biāo)軸上,若SOAP2,直接寫出滿足條件的點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】右圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A、B、C、D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為( )

A. 5πcm2 B. 10πcm2 C. 15πcm2 D. 20πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會上取得好成績的員工,計(jì)劃購買甲、乙兩種獎(jiǎng)品共20件,其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.

(1)如果購買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購買了多少件;

(2)如果購買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個(gè)正方形ABCD,點(diǎn)P是邊BC上一點(diǎn).繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到(點(diǎn)B,P的對應(yīng)點(diǎn)分別是

1)畫出旋轉(zhuǎn)后所得到的;

2)聯(lián)結(jié),設(shè),試用表示的面積;

3)若的面積為18,的面積為5,試求PC的長.

查看答案和解析>>

同步練習(xí)冊答案