【題目】如圖,在平面直角坐標系中,拋物線,過點和點,與y軸交于點C,連接AC交x軸于點D,連接OA,OB
求拋物線的函數表達式;
求點D的坐標;
的大小是______;
將繞點O旋轉,旋轉后點C的對應點是點,點D的對應點是點,直線與直線交于點M,在旋轉過程中,當點M與點重合時,請直接寫出點M到AB的距離.
【答案】(1);(2);(3).(4)或.
【解析】
(1)將點和點代入函數解析式,解方程即可得出答案;
(2)根據拋物線與y軸交于點C,可求出點C坐標為,再根據點,用待定系數法求出直線AC的解析式,將y=0代入直線AC的解析式,即可求出點D的坐標;
(3)連接AB,根據點A、B、O三點的坐標可分別求出線段,,,根據勾股定理逆定理可得
;
(4)過點M作于點H,則MH的長為點M到AB的距離;分兩種情況討論,當點M與點重合且在y軸右側時,根據旋轉以及點M與點重合可得,可得,,,可得出,所以∽,易證;設,則,根據勾股定理得出,解出符合條件的的值,再根據面積法可得;當點M與點重合且在y軸左側時用同樣的方法可得出的值.
解:拋物線過點和點
解得:
拋物線的函數表達式為:
當時,
設直線AC解析式為:
解得:
直線AC解析式為
當時,,解得:
如圖1,連接AB
,
,,
故答案為:.
過點M作于點H,則MH的長為點M到AB的距離.
如圖2,當點M與點重合且在y軸右側時,
繞點O旋轉得即
,,
,,
即
,
∽
,
,即
設,則,
在中,
解得:舍去,
,
如圖3,當點M與點重合且在y軸左側時,
即
同理可證:∽
,
,即
設,則,
在中,
解得:,舍去
,
綜上所述,點M到AB的距離為或.
科目:初中數學 來源: 題型:
【題目】上個月某超市購進了兩批相同品種的水果,第一批用了2000元,第二批用了5500元,第二批購進水果的重量是第一批的2.5倍,且進價比第一批每千克多1元.
(1)求兩批水果共購進了多少千克?
(2)在這兩批水果總重量正常損耗10%,其余全部售完的情況下,如果這兩批水果的售價相同,且總利潤率不低于26%,那么售價至少定為每千克多少元?
(利潤率=)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖網格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;
(2)若點B的坐標為(﹣3,5),試在圖中畫出直角坐標系,并直接寫出A、C兩點的坐標;
(3)根據(2)的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并直接寫出點A2、B2、C2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】據調查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,結果精確到1m).
(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC、AB相交于點D、E,連接AD,已知∠CAD=∠B.
(1)求證:AD是⊙O的切線;
(2)若∠B=30°,AC=,求劣弧BD與弦BD所圍陰影圖形的面積;
(3)若AC=4,BD=6,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一艘輪船位于燈塔P南偏西60°方向,距離燈塔20海里的A處,它向東航行多少海里到達燈塔P南偏西45°方向上的B處(參考數據:≈1.732,結果精確到0.1)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點D在△ABC的外部,AD∥BC,點E在邊AB上,ABAD=BCAE.
(1)求證:∠BAC=∠AED;
(2)在邊AC取一點F,如果∠AFE=∠D,求證:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),矩形ABCD的一邊BC在直角坐標系中x軸上,折疊邊AD,使點D落在x軸上點F處,折痕為AE,已知AB=8,AD=10,并設點B坐標為(m,0),其中m>0.
(1)求點E、F的坐標(用含m的式子表示);(5分)
(2)連接OA,若△OAF是等腰三角形,求m的值;(4分)
(3)如圖(2),設拋物線y=a(x-m-6)2+h經過A、E兩點,其頂點為M,連接AM,若∠OAM=90°,求a、h、m的值. (5分)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,點E是斜邊AB的中點,AB=10,BC=8,點P在CE的延長線上,過點P作PQ⊥CB,交CB的延長線于點Q,設EP=x
(1)如圖1,求證:△ABC∽△PCQ;
(2)如圖2,連接PB,當PB平分∠CPQ時,試用含x的代數式表示△PBE的面積;
(3)如圖3,過點B作BF⊥AB交PQ于點F.若∠BEF=∠A,試求x的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com